Update on double differential charm σ at 7 TeV 2010

Nur Zulaiha Jomhari, Achim Geiser, Josry Reda Metwally

October 8, 2020

DESY Hamburg QCD meeting

Intro

- Objective: To measure the total cross section of inclusive charm at different pp center of mass energies (0.9, 2.76, 5, 7, 8, 13 (from PU in BParking) TeV)
- Strategy: By covering full phase space and by using all PVs in the event. More details can be found in backup and AN-18-284
- What's new? with respect to [prev.]
 - Loosen D^{*±} pre-selection
 - Added dEdx cut
 - Signal yield
 - Efficiency
 - σ as a function of \mathbf{p}_{T} and \mathbf{y}
 - Towards total cross section
 - Conclusion and outlook

$D^{*\pm}$ selection

$D^{*\pm} ightarrow D^0 \pi^\pm ightarrow K^\mp \pi^\pm \pi^\pm$ selection

- Possible combination:
 - Right charge: $K^{\mp}\pi^{\pm}\pi^{\pm}_{s}$
 - Wrong charge: $\mathsf{K}^{\mp}\pi^{\mp}\pi^{\pm}_{s}$ (combinatorial background)
- \bullet Optimized for low $p_{\mathcal{T}}$ charm
- Different cut at higher p_T (> 3.5 GeV) and lower p_T (< 3.5 GeV)*
- Track p_T cut only apply to pion, instead of kaon and pion; p^π_T > 0.5 GeV
- Out on dEdx for kaon
 - discriminate K & π and K & p
- Cut on max. distance from tracks to PV
 - loosen dz cut at D* preselection (from 0.1 to 0.5 cm)
 - tighten (dz \times sin θ) cut at analysis level*

*See cuts in backup

Signal extraction

Signal extraction

• Using wrong charge background subtraction method

The plots show Nsignal at lower p_T . More signal are gain as well as the background. See backup for Nsignal at higher p_T and at different phase space (left: old, right:new)

```
Nsignal at p_T: 2-3 GeV, |y|: 1.5-2.0
```


One example of phase space where you can see clearly the improvement (right plot) with these latest selection cuts

Efficiency improves at the region that we measure compared with the old ones (see backup)

Cross section as a function of $p_T \& |y|$ (statistical uncertainty only) after applied efficient

σ as a function of $p_{\mathcal{T}}$ in y bins

(Left) The cross section is comparable with ALICE (Right) Region where cross sections have never been measured before

σ as a function of $p_{\mathcal{T}}$ in y bins

σ as a function of p_T in |y| bins: 1.5-2.0 & 2.0-2.5

Distance closest approach (dca) fit 7 TeV 2010

Measured and expected charm fraction $ y < 0.5$		
P_T (GeV)	Data	Pythia
1 - 2	1.00 +- 0.09	0.875
2 - 3	0.71 +- 0.13	0.890
3 - 4	0.90 +- 0.04	0.894
4 - 5	0.94 +- 0.03	0.910
5 - 6	0.95 +- 0.06	0.892
6 - 7	0.85 +- 0.10	0.899
7 - 8	0.91 +- 0.06	0.904
8 - 9	0.89 +- 0.08	0.909
9 - 10	0.84 +- 0.16	0.909
> 10	1.00 +- 0.02	0.903
Linear ave. (charm frac.)	0.90 +- 0.5	0.90

- Pythia describes charm fraction well within very large data uncertainties

Cross section as a function of $p_T \& |y|$ after $c+b \rightarrow c$ rescaling to 0.9 (statistical uncertainty only)

σ as a function of $\mathbf{p}_{\mathcal{T}}$ in $|\mathbf{y}|$ bin

(Left) The cross section is comparable with ALICE (Right) Region where cross sections have never been measured before

σ as a function of $p_{\mathcal{T}}$ in |y| bin

double differential σ as a function of p_T in |y| bins

The upper band of FONLL is in agreement with data

double differential σ as a function of p_T in |y| bins

The columns between the red lines show the same $D^* \sigma$ as a function of |y| (start from high p_T region)

19/29

σ as a function of |y| in p_T bin

σ as a function of $|\mathbf{y}|$ in \mathbf{p}_{T} bin

21/29

σ as a function of |y| in p_T bin

double differential σ as a function of |y| in p_T bins

The σ was compared with ALICE and LHCb result for each |y| bin

Towards a total charm cross section (very preliminary)

double differential σ as a function of |y| in p_T bins

Towards a total charm cross section (very preliminary)

	Phase space	Integrated D* cross section (µb)
1	CMS region measured:	
	$ y < 2, p_T > 1$	$1096 \pm 133 \text{ (stat.)} \pm ?? \text{ (sys.)}$
2	CMS region extrapolated (pt 0-1):	
Ζ	(FONLL upper limit)	472 \pm 57 (stat.) \pm ?? (sys.) \pm ?? (extrapolation)
2	LHCb region measured:	
3	$2 < y < 4.5, 1 < p_T < 8$	$1018 \pm 40 \; (stat.) \pm 120 \; (sys.)$
1	LHCb region extrapolated:	
4		$344 \pm 15 \text{ (stat.)} \pm 38 \text{ (sys.)} \pm 19 \text{ (extrapolation)}$
_	beyond LHCb extrapolated $ y > 4.5$:	
5	(FONLL upper limit, except PDF)	1059 (tbc) \pm ?? (stat.)
	Total	$3989 \pm 360 \text{ (stat.)} \pm ?? \text{ (sys.)}$

- fragmentation fraction: 0.239 / 2
- total ccbar cross section: 8.3 ± 0.8 (stat.) \pm ?? (sys.) mb
- theory extrapolation factor: ~1.9 (if confirmed): smallest extrapolation factor ever achieved at LHC (but still somewhat larger than hoped for)

Systematic uncertainties (very preliminary)

Systematic uncertainties (very preliminary)

- Below are parts of the systematics that is ongoing and it is not a complete list yet
- These values are not yet applied to the current results
- PU = 5% (limited statistic of MinimumBias MC)
- lumi = 4% (from CMS DP-2011/002)
- tracking = 9.4% (from Valentina's PAS: BPH-18-003)
- BR = 1.1% (from PDG 2020)
- trigger = negligible (by definition)
- charm fraction = 5.5%

Conclusion

- $\bullet\,$ The analysis is performed using 7 TeV 2010 data (special low p_{T} tracking)
- Since statistics is a limiting factor for this analysis, using (in addition) pile-up vertices helps to get sizeable additional statistics
- The double differential D* σ has been measured
- The upper edge of the FONLL theory band is an agreement with the data (as in all other existing measurements)
- The result for the charm cross section is in agreement with ALICE at low |y|, with LHCb at high |y|, and covers the phase space in between that was never (fully) measured before
- First attempt in calculating the total $c\overline{c} \sigma = 8.3 \text{ mb}$

Introduction overview

- Objective: To measure the total cross section of inclusive charm at different pp center of mass energies (0.9, 2.7, 5, 7, 8, 13 (from PU in BParking) TeV)
- Why? Test NNLO QCD, constraints on PDFs, measurement of charm quark mass
- Strategy: By using all PVs in the event & CMS + LHCb together can cover essentially full phase space of σ^{tot}_{cc}
- Challenge: Acceptance of D mesons at low $p_{\mathcal{T}}$

Datasets & luminosity

Table 1:	Data 7 TeV 2010

Data	#Events	(N)MB	eff.lumi (nb ⁻¹)
/ZeroBias/Commissioning10-May19ReReco-v1/RECO	129,186,198	646,080	0.0124
/ZeroBias/Run2010A-Apr21ReReco-v1/AOD	34,923,622	9,884,247	0.190
/MinimumBias/Commissioning10-May19ReReco-v1/RECO	46,553,963	32,246,050	0.619
/MinimumBias/Run2010A-Apr21ReReco-v1/AOD	103,848,957	25,950,980	0.498
/MinimumBias/Run2010B-Apr21ReReco-v1/AOD	40,785,403	16,092,377	0.309
/MuOnia/Run2010A-Apr21ReReco-v1/AOD	33,021,472	4,258,204	0.0817
/MuOnia/Run2010B-Apr21ReReco-v1/AOD	26,685,576	20,388,79x	0.391
/Mu/Run2010A-Apr21ReReco-v1/AOD	51,802,592	6,039,449	0.116
/Mu/Run2010B-Apr21ReReco-v1/AOD	32,376,291	15,094,68x	0.290
/MuMonitor/Run2010A-Apr21ReReco-v1/AOD	55,740,719	717,184	0.0138
/MuMonitor/Run2010B-Apr21ReReco-v1/AOD	12,728,741	1,799,123	0.0345
/EG/Run2010A-Apr21ReReco-v1/AOD	53,163,466	5,729,356	0.110
/Electron/Run2010B-Apr21ReReco-v1/AOD	32,772,061	19,213,11x	0.369
/EGMonitor/Run2010A-Apr21ReReco-v1/AOD	67,929,392	126,022	0.00242
/EGMonitor/Run2010B-Apr21ReReco-v1/AOD	11,826,859	1,922,025	0.0369
Total	733,345,312	160,107,677	3.0 nb

(more details in here or AN-18-284)

Table 1:	Data 7 TeV 2010

Data	#Events	(N)MB	eff.lumi (nb ⁻¹)
/ZeroBias/Commissioning10-May19ReReco-v1/RECO	129,186,198	646,080	0.0124
/ZeroBias/Run2010A-Apr21ReReco-v1/AOD	34,923,622	9,884,247	0.190
/MinimumBias/Commissioning10-May19ReReco-v1/RECO	46,553,963	32,246,050	0.619
/MinimumBias/Run2010A-Apr21ReReco-v1/AOD	103,848,957	25,950,980	0.498
/MinimumBias/Run2010B-Apr21ReReco-v1/AOD	40,785,403	16,092,377	0.309
/MuOnia/Run2010A-Apr21ReReco-v1/AOD	33,021,472	4,258,204	0.0817
/MuOnia/Run2010B-Apr21ReReco-v1/AOD	26,685,576	20,388,79x	0.391
/Mu/Run2010A-Apr21ReReco-v1/AOD	51,802,592	6,039,449	0.116
/Mu/Run2010B-Apr21ReReco-v1/AOD	32,376,291	15,094,68x	0.290
/MuMonitor/Run2010A-Apr21ReReco-v1/AOD	55,740,719	717,184	0.0138
/MuMonitor/Run2010B-Apr21ReReco-v1/AOD	12,728,741	1,799,123	0.0345
/EG/Run2010A-Apr21ReReco-v1/AOD	53,163,466	5,729,356	0.110
/Electron/Run2010B-Apr21ReReco-v1/AOD	32,772,061	19,213,11x	0.369
/EGMonitor/Run2010A-Apr21ReReco-v1/AOD	67,929,392	126,022	0.00242
/EGMonitor/Run2010B-Apr21ReReco-v1/AOD	11,826,859	1,922,025	0.0369
Total	733,345,312	160,107,677	3.0 nb ⁻¹

(more details in here or AN-18-284)

Low p_T tracks in 2010 vs 2011 MinimumBias data

$D^* \ p_{\mathcal{T}} \ distribution$

D* p_T distribution at 7 TeV 2010 Minimum Bias MC

 p_{T} bin 1-2 GeV (slow π p_{T} 70-150 MeV) crucial for total cross section (and 2-3 GeV)

Signal extraction

• Using wrong charge background subtraction method

The plots show Nsignal at higher $p_{\mathcal{T}}$. More signal are gain as well as the background.

37/29

Nsignal at different phase space

p₇:1-2 GeV, |y|:0.0-0.5 **p**₇:1-2 GeV, |y|:0.5-1.0 right charge side band right charge side band 80 Entries Entries 90 N(D*[±]): 45 ± 24 N(D*[±]): 94 ± 22 70 80 60 70 60 50 50 40 40 30 30 20 20 10 10 0 0 0.14 0.145 0.15 0.155 0.16 0.165 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.17 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$

p₇:1-2 GeV, |y|:1.0-1.5 **p**₇:1-2 GeV, |y|:1.5-2.0 right charge right charge side band side band wrong charge Entries Entries N(D*[±]): 8 ± 28 N(D*[±]): 51 ± 28 120 120 100 100 80 80 60 60 40 40 20 20 0 0 0.145 0.15 0.155 0.16 0.165 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.14 0.17 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s} - m_{K\pi} (GeV)$

p₇:1-2 GeV, |y|:2.0-2.5

p₇:2-3 GeV, |y|:0.0-0.5 **p**₇:2-3 GeV, |y|:0.5-1.0 --- right charge --- right charge wrong charge side band wrong charge side band Entries Entries N(D*[±]): 178 ± 25 N(D*[±]): 221 ± 26 100 100 80 80 60 60 40 40 20 20 0 (0.145 0.15 0.155 0.16 0.165 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.14 0.17 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$

p*T*:2-3 GeV, |y|:1.0-1.5

p₇:2-3 GeV, |y|:1.5-2.0

p*T*:2-3 GeV, |y|:2.0-2.5

p₇:3-4 GeV, |y|:0.0-0.5 **p**₇:3-4 GeV, |y|:0.5-1.0 right charge right charge wrona charae side band wrong charge side band Entries 240 Entries 18(N(D*[±]): 374 ± 32 N(D*[±]): 456 ± 32 220 160 200 140 180 120 160 140 100 120 80 100 80 60 60 40 40 20 20 0 0 0.145 0.15 0.155 0.16 0.165 0.17 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.14 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s} - m_{K\pi} (GeV)$

p₇:3-4 GeV, |y|:1.0-1.5

p*T*:3-4 GeV, |y|:1.5-2.0

p*T*:3-4 GeV, |y|:2.0-2.5

p₇:4-5 GeV, |y|:0.0-0.5 **p**₇:4-5 GeV, |y|:0.5-1.0 right charge ---- right charge wrona charae side band wrong charge side band Entries Entries 250 N(D*[±]): 586 ± 32 N(D*[±]): 372 ± 29 160 140 200 120 150 100 80 100 60 40 50 20 0 (0.145 0.15 0.155 0.16 0.165 0.145 0.15 0.155 0.16 0.165 0.17 0.14 0.17 0.14 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s} - m_{K\pi}$ (GeV)

p*T*:4-5 GeV, |y|:1.0-1.5

p₇:4-5 GeV, |y|:1.5-2.0

p*T*:4-5 GeV, |y|:2.0-2.5

p₇:5-6 GeV, |y|:0.0-0.5 **p**₇:5-6 GeV, |y|:0.5-1.0 ____ right charge --- right charge wrona charae side band wrong charge side band Entries 140 Entries N(D*[±]): 336 ± 22 N(D*[±]): 286 ± 20 100 120 100 80 80 60 60 40 40 20 20 0 0.145 0.15 0.155 0.16 0.165 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.14 0.17 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s} - m_{K\pi} (GeV)$

Entries

p₇:5-6 GeV, |y|:1.0-1.5 **p**₇:5-6 GeV, |y|:1.5-2.0 ____ right charge - right charge wrong charge side band side band wrong charge Entries N(D*[±]): 101 ± 16 N(D*[±]): 136 ± 18 40 60 35 50 30 40 25 20 30 15 20 10 10 5 0 0.145 0.15 0.155 0.16 0.165 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.14 0.17 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s} - m_{K\pi} (GeV)$

p*T*:**5**-6 GeV, |y|:2.0-2.5

p₇:6-7 GeV, |y|:0.0-0.5 **p**₇:6-7 GeV, |y|:0.5-1.0 - right charge --- right charge wrong charge side band wrong charge side band Entries Entries 100 N(D*[±]): 204 ± 16 N(D*[±]): 233 ± 17 70 60 80 50 60 40 30 40 20 20 10 0 0.145 0.155 0.145 0.155 0.165 0.17 0.14 0.15 0.16 0.165 0.17 0.14 0.15 0.16 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s} - m_{K\pi} (GeV)$

p₇:6-7 GeV, |y|:1.0-1.5 **p**₇:6-7 GeV, |y|:1.5-2.0 - right charge - right charge wrona charae side band side band wrong charge Entries Entries N(D*±): 41±11 N(D*[±]): 121 ± 14 45 20 40 18 35 16 14 30 12 25 10 20 8 15 6 10 5 2 0 0 0.145 0.15 0.155 0.16 0.165 0.17 0.145 0.15 0.155 0.16 0.165 0.17 0.14 0.14 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s} - m_{K\pi} (GeV)$

p*T*:6-7 GeV, |y|:2.0-2.5

p₇:7-8 GeV, |y|:0.0-0.5 **p**₇:7-8 GeV, |y|:0.5-1.0 --- right charge --- right charge wrona charae side band wrong charge side band Entries Entries N(D*[±]): 144 ± 13 N(D*[±]): 111 ± 12 45 50 40 35 40 30 30 25 20 20 15 10 10 0 0.155 0.155 0.165 0.14 0.145 0.15 0.16 0.165 0.17 0.14 0.145 0.15 0.16 0.17 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s}$ - $m_{K\pi}$ (GeV)

p*T*:**7-8 GeV**, |**y**|:**1.0-1.5**

p₇:7-8 GeV, |y|:1.5-2.0

p*T*:**7-8 GeV**, |**y**|:**2.0-2.5**

p₇:8-9 GeV, |y|:0.0-0.5 **p**₇:8-9 GeV, |y|:0.5-1.0 ____ right charge --- right charge wrong charge side band wrong charge side band Entries 45 Entries 30 $N(D^{*\pm}): 74.3 \pm 9.4$ N(D*[±]): 94 ± 10 40 25 35 30 20 25 15 20 15 10 10 5 0 0.145 0.155 0.14 0.145 0.15 0.155 0.16 0.165 0.17 0.14 0.15 0.16 0.165 0.17 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s}$ - $m_{K\pi}$ (GeV)

p₇:8-9 GeV, |y|:1.0-1.5 **p**₇:8-9 GeV, |y|:1.5-2.0 - right charge --- right charge wrong charge side band wrong charge side band Entries Entries 12 N(D*[±]): 31.5 ± 6.7 N(D*[±]): 33.2 ± 7.3 10 10 8 6 6 4' 2 0 0.155 0.165 0.14 0.15 0.165 0.14 0.145 0.15 0.16 0.17 0.145 0.155 0.16 0.17 $m_{K\pi\pi_s} - m_{K\pi} (GeV)$ $m_{K\pi\pi_s}$ - $m_{K\pi}$ (GeV)

p*T*:8-9 GeV, |y|:2.0-2.5

p*T*:9-10 GeV, |y|:0.0-0.5

p₇:9-10 GeV, |y|:0.5-1.0

p*T*:9-10 GeV, |y|:1.0-1.5

p₇:9-10 GeV, |y|:1.5-2.0

p*T*:9-10 GeV, |y|:2.0-2.5

p₇:10-11 GeV, |y|:1.0-1.5

p₇:10-11 GeV, |y|:1.5-2.0

p₇:10-11 GeV, |y|:2.0-2.5

Efficiency from previous presentation

dca fit fot higher and lower $p_{\mathcal{T}}$ region

 dca fit has also been done at higher and lower p_T region to cover all phase space:

Measured and expected charm fraction (all rapidity)		
P _T (GeV)	Data	Pythia
< 3.5	0.95 +- 0.02	0.911
> 3.5	0.91 +- 0.07	0.884