Impact of decay chain ambiguities for fits to LHC data

Takanori Kono (University of Hamburg)

Fittino workshop, Bonn 17–19/02/2010

Introduction

Aim

- Investigate the impact on the SUSY parameter determination of making a different interpretation of observables, i.e. particle assignments in the cascade decay
- Can the fit always select the correct interpretation?
- How does it affect the parameter uncertainty

- Method
 - Perform fits with different interpretation of data
 - First use Markov chain to scan the parameter space quickly to eliminate unrealistic interpretations
 - For interpretations which might give small chi2, perform a toy fit

Model and input observables

- Model: mSUGRA
- Data:
 - Measurements expected at LHC (10 fb⁻¹)
 - Data generated at SPS1a benchmark point

LHC observables

	Observable	Nominal			
Observables from:		Value	$1 { m ~fb^{-1}}$	$10 \ {\rm fb}^{-1}$	$300~{\rm fb}^{-1}$
lhc/fittino.in.lhc_obs10	m_h	109.6		1.4	0.1
	m_t	172.4	1.1	0.05	0.01
	$m_{ ilde{\chi}_1^\pm}$	180.2			11.4
Pair production of slepton	$\sqrt{m_{ ilde\ell_L}^2-2m_{ ilde\chi_1^0}^2}$	148.8			1.7
and squarks	$m_{ ilde{g}}^{ m v}-m_{ ilde{\chi}_1^0}$	507.7		13.7	2.5
$\widetilde{q} \rightarrow hh \rightarrow hh \widetilde{\gamma}_{*}^{0}$	$\sqrt{m_{ ilde q_R}^2-2m_{ ilde \chi_1^0}^2}$	531.0	19.6	6.2	1.1
8 , 00_1 , 00_{χ_2}	$m_{ ilde{g}}-m_{ ilde{b}_1}$	88.7			1.5
$ ightarrow bbl^{\pm}l_{R}^{+} ightarrow bbl^{\pm}l^{+}\widetilde{\chi}_{2}^{0}$	$m_{ ilde{g}}-m_{ ilde{b}_2}$	56.8			2.5
$a \rightarrow a \widetilde{a}^0 \rightarrow a l^{\pm} \widetilde{l}^{\mp} \rightarrow a l^{\pm} l^{\mp} \widetilde{a}^0$	$m_{\ell\ell}^{\max}(m_{ ilde{\chi}_1^0}^{-},m_{ ilde{\chi}_2^0}^{-},m_{ ilde{\ell}_R}^{-})$	80.4	1.7	0.5	0.03
$q_L \to q\chi_2 \to q\iota \ \iota_1 \to q\iota \ \iota \ \chi_1$	$m_{\ell\ell}^{\max}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_4^0},m_{ ilde{\ell}_L})$	280.6		12.6	2.3
$a_{\pm} \rightarrow a \widetilde{\gamma}_{\pm}^{0} \rightarrow a \tau^{\pm} \widetilde{\tau}_{\pm}^{\mp} \rightarrow a \tau^{\pm} \tau^{\mp} \widetilde{\gamma}_{\pm}^{0}$	$m_{ au au}^{ ext{max}}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_2^0},m_{ ilde{ au}_1})$	83.4	12.6	4.0	0.73
q_L , q_{λ_2} , q_{ℓ} , q_{ℓ} , χ_1	$m_{\ell\ell q}^{\max}(m_{ ilde{\chi}_1^0},m_{ ilde{q}_L},m_{ ilde{\chi}_2^0})$	452.1	13.9	4.2	1.4
	$m_{\ell q}^{ m low}(m_{ ilde{\ell}_R},m_{ ilde{q}_L},m_{ ilde{\chi}_2^0})$	318.6	7.6	3.5	0.9
	$m_{\ell q}^{\mathrm{high}}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_2^0},m_{ ilde{\ell}_R},m_{ ilde{q}_L})$	396.0	5.2	4.5	1.0
~	$m_{\ell\ell q}^{ m thres}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_2^0},m_{ ilde{\ell}_B},m_{ ilde{q}_L})$	215.6	26.5	4.8	1.6
$b_1 \rightarrow b \widetilde{\chi}_2^0 \rightarrow b l^{\pm} l_1^{\mp} \rightarrow b l^{\pm} l^{\mp} \widetilde{\chi}_1^0$	$m_{\ell\ell b}^{ m thres}(m_{\tilde{\chi}_{1}^{0}}^{2},m_{\tilde{\chi}_{2}^{0}}^{2},m_{\tilde{\ell}_{B}}^{2},m_{\tilde{b}_{1}}^{2})$	195.9		19.7	3.6
	$m_{tb}^{w}(m_{t}, m_{\tilde{t}_{1}}, m_{\tilde{\chi}^{\pm}}, m_{\tilde{g}}, m_{\tilde{b}_{1}})$	359.5	43.0	13.6	2.5
$\widetilde{g} \to t \widetilde{t_1} \to t b \widetilde{\chi}_1^{\pm}$	$\frac{\mathcal{B}(\tilde{\chi}_{2}^{0} \to \tilde{\ell}_{R}\ell) \times \mathcal{B}(\tilde{\ell}_{R} \to \tilde{\chi}_{1}^{0}\ell)}{\mathcal{B}(\tilde{\chi}_{0}^{0} \to \tilde{\tau}_{1}\tau) \times \mathcal{B}(\tilde{\tau}_{1} \to \tilde{\chi}_{1}^{0}\tau)}$	0.076	0.009	0.003	0.001
$\widetilde{g} \to b\widetilde{b}_1 \to bW\widetilde{t}_1 \to bbW\widetilde{\chi}_1^{\pm}$	$\frac{\mathcal{B}(\tilde{g} \rightarrow \tilde{b}_2 b) \times \mathcal{B}(\tilde{b}_2 \rightarrow \tilde{\chi}_2^0 b)}{\mathcal{B}(\tilde{g} \rightarrow \tilde{b}_1 b) \times \mathcal{B}(\tilde{b}_1 \rightarrow \tilde{\chi}_2^0 b)}$	0.168			0.078
$\widetilde{g} \to b\widetilde{b}_1 \to tb\widetilde{\chi}_1^{\pm}$		2010/2	// 7		

Fittino workshop in Bonn

2010/2/17

List of interpretations

qll final state $\left(\widetilde{\chi}_{2}^{0},\widetilde{l}_{R},\widetilde{\chi}_{1}^{0}\right)$

- Change combination of neutralinos involved (x6)
 - Right-handed selectron to left-handed (x2)

 \rightarrow 12 combinations

- Same as above.

 $q \tau \tau$ final state $\left(\widetilde{\chi}_{2}^{0}, \widetilde{\tau}_{1}, \widetilde{\chi}_{1}^{0}\right)$

- → 12 combinations – qll and qtautau final states correlated through the measurement of $\frac{Br(\tilde{\chi}_{2}^{0} \rightarrow \tilde{l}_{R}l) \cdot Br(\tilde{l}_{R} \rightarrow \tilde{\chi}_{1}^{0}l)}{Br(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}_{1}\tau) \cdot Br(\tilde{\tau}_{1} \rightarrow \tilde{\chi}_{1}^{0}\tau)}$
 - \rightarrow 144 combinations for qll and qtautau

qll final state (2) $\left(\tilde{\chi}_{4}^{0}, \tilde{l}_{L}, \tilde{\chi}_{1}^{0}\right)$

- Same as above \rightarrow 12 combination:

 $ec{q_1} \ / \ \ell_2^{\pm} \ / \ \ell_1^{\mp} \ ec{q_1} \ ec{\ell_2^{\pm}} \ / \ \ell_1^{\mp} \ ec{q_1} \ ec{\ell_1^{\pm}} \ ec{q_1} \ ec{\ell_1^{\pm}} \ ec{\ell_1^$

χ^2 of different fits

Particle assignment

Toy fit

- After pre-selecting interpretations which could give a good fit
- Perform a toy fit
 - Smear observables within their uncertainties and estimate the uncertainty on parameters
 - Consider changing the particle assignment as another degree of freedom and see if it could pin down the correct interpretation
- Initial values of parameters taken from the Markov chain result

 χ^2 correlations

 χ^2 correlation between the correct interpretation and 4 best other interpretations

2010/2/17

Results of the fit (198 smeared points)

	No. of times getting the best χ^2 among all	No. of times getting the best χ^2 wrt. the correct model
Correct assignment	135	
qll2, $\chi_4 \rightarrow \chi_3$	40	60
qll2, e _L →e _R	13	50
qll2, $\chi_4 \rightarrow \chi_3$, $e_L \rightarrow e_R$	5	28
qll, $\chi_2 \rightarrow \chi_4$; qtt, $\chi_2 \rightarrow \chi_3$	0	2
qττ, χ ₂ →χ ₃	0	1
qll, $\chi_2 \rightarrow \chi_3$; qtt, $\chi_2 \rightarrow \chi_3$	0	3
qll, $\chi_2 \rightarrow \chi_{4,} e_R \rightarrow e_L;$ qtt, $\chi_2 \rightarrow \chi_3$	2	4
qll, $\chi_2 \rightarrow \chi_{3}, e_R \rightarrow e_L;$ qtt, $\chi_2 \rightarrow \chi_3$	2	3
Model 9	1	1
Model 10	0 o workshop in Bonn	0 2010/2/17

Fitted parameters

Parameter uncertainty

Some ideas on next steps

- Would be interesting to see when these ambiguities become important
 - So far, tried mSUGRA with many LHC observables (10 fb⁻¹)
 - Try with less LHC observables expected with 1 fb⁻¹
 - MSSM18 fit with LE+few LHC observables
- Implementation into fittino
 - I have a few scripts to generate fittino input file with different interpretations observables
 - However, the whole process takes a few weeks
 - submitting MC jobs → analyze → submit ToyFit jobs → analyze
 - Shall we include these scripts/macros to fittino?

Summary

- The decay chain ambiguities on mSUGRA fit to LHC observables were investigated
 - Vary the assumptions on neutralino and slepton involved in the cascade decay
 - Scan parameter space for each interpretation with Markov chain method
 - Toy fit for detailed evaluation for few interpretations
- > Only a few interpretations would give the lowest χ^2 compared to the correct one
 - Small increase on the parameter uncertainty
- Will redo the analysis with latest software