

Flavour observables SPheno 3.0 ⇔ Master Code

Werner Porod

Universität Würzburg

Observables contained in both programs

•
$$b \to s\gamma, b \to sl^+l^-, B_s^0 \to \mu^+\mu^-, B_u^+ \to \tau^+\nu$$

$$lacksquare$$
 $\Delta M_{B_s}, \Delta M_{B_d}$

Observables in Master Code only

$$lacksquare$$
 $K^0 \to \pi \nu \nu^{\dagger}, K^+ \to \mu^+ \nu$

$$lacksquare$$
 ΔM_K †

Observables in SPheno only

$$lacksquare$$
 $b \rightarrow s \nu \nu$

[†] also in SPheno implemented, but still in the testing phase

SPheno

input via SLHA2 interface, includes also SM values

output values for the observables

calc. currently Wilson coefficients either at 160 GeV (for $b \rightarrow s\gamma$, hep-ph/0612166)

or at m_Z ; include all mixing effects, complete formula, running masses

calc. future calculate Wilson coefficients at M_{SUSY} + running to m_Z

Master Code

input SUSY parameters via SLHA2 interface

all SM values hard-coded, e.g. $m_b^{\overline{MS}}(m_Z)=3$ GeV, also SM observables

no check if consistent with the other part of the master code

output mostely ratios SUSY/SM (theory)

only $B_q \to \mu^+ \mu^-$ values for the observables

calculation Wilson coefficients either at 160 GeV m_t or m_Z

use running SUSY masses at M_{SUSY} without check

simplfications like masses of first two generations are equal to $M_{\tilde{Q}}$ and $M_{\tilde{L}}$

several approximate formulae which however should give correct results

for most of parameter space

$$b \rightarrow s \gamma$$
, $b \rightarrow s l^+ l^-$, $B_u^+ \rightarrow \tau^+ \nu$

lacksquare $b
ightarrow s \gamma$

SPheno: SM NLO + SUSY LO at M_Z (T. Hurth, E. Lunghi and W. P., hep-ph/0312260) or SM NNLO + SUSY LO at 160 GeV (E.Lunghi, J.Matias, hep-ph/0612166) calculate C_7 , C_7' , C_8 , C_8' including all SUSY contributions

Master Code: SM NNLO fixed at $3.15\cdot 10^{-4}$ + H^+ at m_Z (?) using $m_{H^+}(M_{SUSY})$ + SUSY χ^+ , \tilde{g} at $Q=m_{\tilde{t}_1}$ calculate $C_7,\,C_8$

agreement within 10% after adjusting SM input (BR, Yukawas, Wilson coefficients)

•
$$b \rightarrow sl^+l^-$$
 similar situation as $b \rightarrow s\gamma$, Master code: $BR_{SM} = 1.55 \cdot 10^{-6}$

differences up to a factor of 2, source, problem with m_{τ} resumation ?

$${\color{red} {\sf SPheno}} \qquad \qquad M_{H^+}(m_Z)$$

Master Code
$$M_{H^+}(M_{SUSY})$$

agreement within a few per-cent once masses are adjusted

- $oldsymbol{\triangle} \Delta M_{B_q}$: agreement within 10-20 % after Higgs mass adjustment as in $B_u^+ \to au^+
 u$,
- $P_q \to \mu^+\mu^-$ differences up to order of magnitude (in both directions) after Higgs mass adjustment

Master Code: $BR(B_s \to \mu^+ \mu^-)_{SM} = 3.46 \cdot 10^{-9}, BR(B_d \to \mu^+ \mu^-)_{SM} = 2 \cdot 10^{-10}$

Some differences due to

- full calculation (SPheno) versus approximations (Master Code)

but this is not complete story, still investigating complication: different operator basis