Update on Kinematic Fits in the Leptonic Channel

Benedikt Mura Hamburg SUSY Meeting 21.1.2010

SPONSORED BY

Benchmarkpoint & Cascade

mSUGRA Parameters

	SPS1a		
m_0	100 GeV		
$m_{1/2}$	250 <i>GeV</i>		
A_0	-100 <i>GeV</i>		
$\tan(\beta)$	10		
μ	>0		

Particle	Mass [GeV]	ΔM to next [GeV]	
\tilde{g}	606	39 / 44	
$ ilde{q}_L$	567 (ud) / 562 (cs)	387 / 382	
$ ilde{\chi}^0_2$	180	37	
\tilde{l}_R^\pm	143	46	
$ ilde{\chi}^0_1$	97		

X-section: ~36 pb @ 14 TeV

Leptonic Cascade

- 2 jets + 2x2 OSSF leptons
- 16/32 possible combinations
- $-BR = 1.7*10^{-3}$

Likelihood Definition

- Hypotheses close to true masses fit on average better
- Use events' combined fit probability to quantify how good the assumed masses fit.

$$\log \mathcal{P} = \sum_{i}^{N} \log P(\chi_{i}^{2})$$

$$P_{i} = P_{\text{cut}} \text{ for } P_{i} < P_{\text{cut}}$$

- Cut-off to avoid numerical fluctutations
- $-P_{cut}=0.01$

Spread after repeated Fit

- Fit each event 498 times (for true masses here)
 - Calculate likelihood from best probability of each event
- Repeat this 100 times
- Some Likelihood P:

Zoom:

- Large Spread
 - Expected one peak…
 - Outlier: bug?

Event-wise Spread

Last week:

- From 498x100 Fits of all events:
 - Max. difference: find some event with really large values

- RMS of distribution
 - rather small values
 - study 2 outliers

New Event Grouping

- Now 505x99 Fits of all 499 events:
 - Max. difference of fit probabilities for one event: P_{max}-P_{min}

- RMS of probability distribution
 - rather small values
 - study 2 outliers

Outlier Events

Event No.	Туре	RMS	MaxMin.	Converged Runs*
113	Signal	0.407	0.953	72/99
64	Signal	0.191	0.499	81/99
323	Signal	0.066	0.478	2/99
210	Signal	0.04	0.121	86/99

- (*) Converged here means any Prob>P_{cut} in this run
- Problematic Feature:
 - Distribution of best Prob has two 'populations'
 - Some runs with no Prob>P_{cut}
 - Causes large differences in total likelihood

 For now just excluded them from the total likelihood

Likelihood w/o Outliers

 Total likelihood distribution from 99 runs:

- Very small spread now
- Looks almost gaussian

Next: study problematic events

- Why does it happen?
 - Particular event topology?
 - Mass hypothesis dependency?
- How to deal with them?
 - Exclusion: How to classify as good/bad event
 - ...?