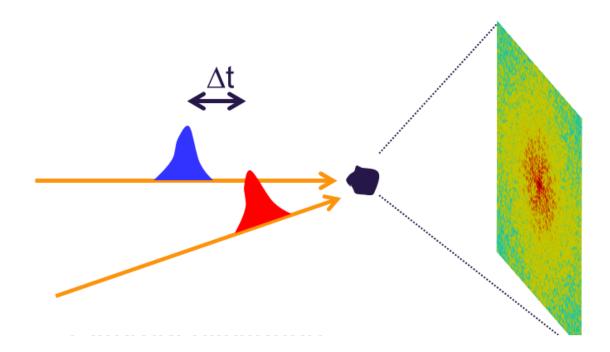
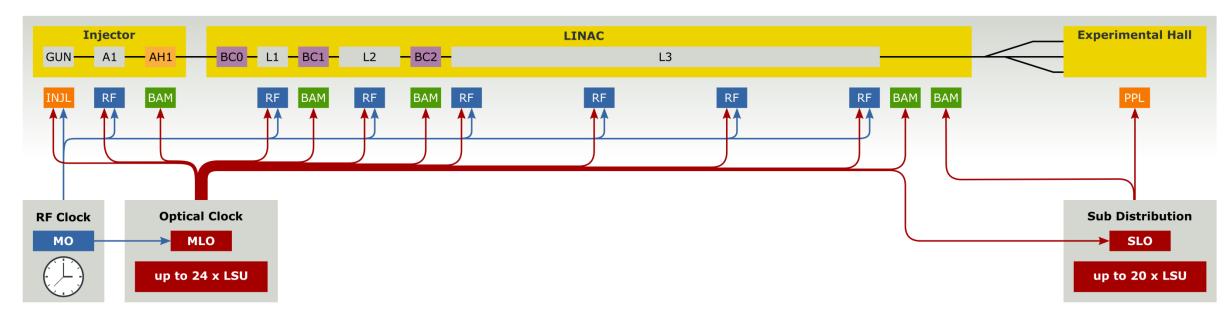
First Steps towards data-based IPC for the EuXFEL optical synchronization System

Intelligent Process Control Seminar Speedtalk

Maximilian Schütte on behalf of LbSync Team & MCS Team LbSync – MSK - DESY Hamburg, 17.11.2020



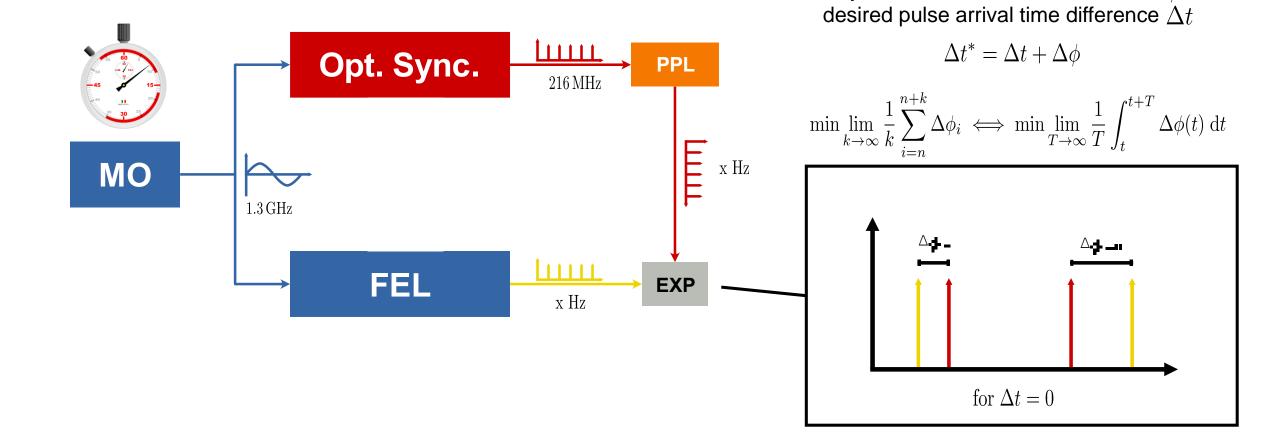
Pump-Probe Experimentation


Principle of Operation

- An experimental sample is **activated** through a **pump** laser pulse.
- The process is **imaged** with a **probe** laser pulse at a specified time Δt relative to the activation.
- Repeating the process for a range of Δt , a movie of the process is created.
- The experiment may be repeated for identical Δt to increase brightness through image averaging.
- Accuracy of Δt ensures
 - steady movie "speed" (framerate)
 - sharpness after averaging.

Introduction to the Optical Synchronization System

Ultra Stable Timing for Ultra Sensitive Experiments



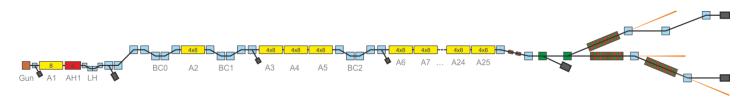
- The Master Laser Oscillator (MLO) acts as **pulsed optical clock** and is phase locked to the RF Master Oscillator (MO).
- Optical timing is distributed via actively length-stabilized fiber links and used for
 - Laser locking of injector and experiment pump-probe lasers through optical cross-correlation (Laser-2-Laser).
 - RF timing correction / stabilization at accelerator modules through Mach-Zehnder-Modulator (Laser-2-RF / REFM-OPT)
 - Bunch arrival time diagnostics (BAM)

Slide at courtesy of LbSync Team

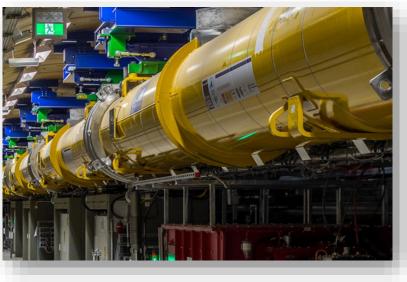
Arrival Time Synchronization Problem

For Pump-Probe Experiments at FLASH and European XFEL

Objective is to minimize deviation $\Delta \phi$ from


Data Acquisition for Linear Accelerators

Current Situation at DESY / EuXFEL


• Large-scale accelerators provide huge amounts of data

And it's getting more

- > 10 Million data addresses in DOOCS control system for EuXFEL
 - Configuration, measurements, extracted features..
- > 20.000 high data-rate channels
 - > Not feasible to completely transfer via network
- 30 TB/day of data recorded for EuXFEL in short term archive
 - In many cases not evaluated before deletion
- < 1 % of available data goes to central DAQ
 - > Often channels required for certain conclusion are missing

Motivation & Benefits

Why is data so popular?

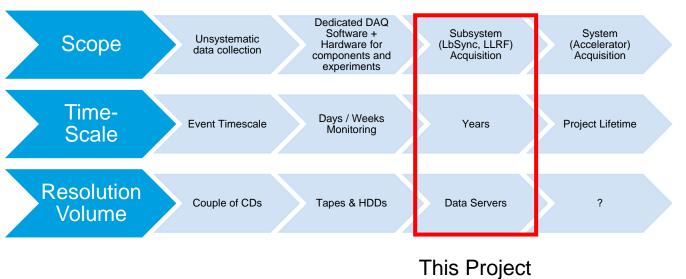
- Data has become a new fundamental resource in science and the economy.
- Data based analysis goes beyond the complexity limitations of first-principles.
- Especially well suited for detecting anomalies and faults, which usually are not modelled.
- Can also skip analysis and go directly to data-driven algorithms ("Machine Learning").
- Powerful machines necessary, now available.

Why Optical Synchronization System?

- New technology, a lot to understand and learn
 - Long-term system health & aging
 - Fault sources
 - Curious effects & Crosstalk (Tidal influences, ...)
- Good accessibility, even during operation
- Clear system boundaries
- Operates (more or less) independently from accelerator
- Major data source

The Optical Synchronization DAQ

Definition & Purpose


"One Data Acquisition System to capture it all."

Abstract

- In-house developed DAQ system
- Collecting data from system core, client and connected systems
- Permanent operation
- 100 TB / year quota

Goals

- Reconstruct the entire subsystem state
- All data in one place
- Multiple years into the past
- Show benefit of data analysis and algorithms on subsystem level

Evolution of Data Acquisition and DAQ Systems

Core Questions for DAQ Design

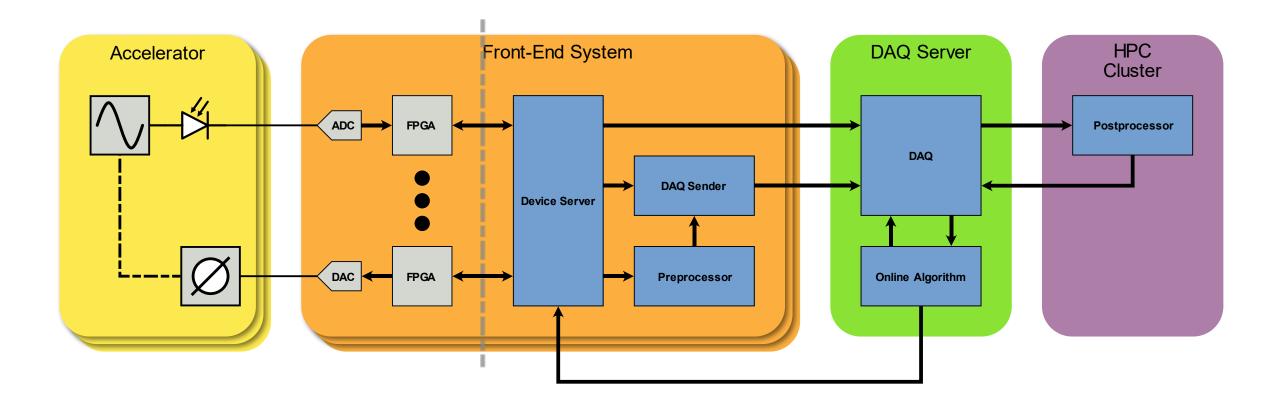
New requirements need new solutions

How much and at which rate is data produced?	 Are the front-end CPUs up to the task? Protocols suited?
How much data can be transferred?	 Front-End upstream most likely bottleneck.
How much data can be stored?	 High reduction factor necessary!
How is it made accessible to users?	Clearly documented API required!
How is data integrity ensured?	 Continuous validation desirable, much can be lost!
How is data identified?	 Labeling is inevitable, meaning of data needs to be clear!
Which data is NOT produced?	 Metadata problem – which data is required by algorithm?

The Optical Synchronization DAQ

Quick Facts

Quantitative

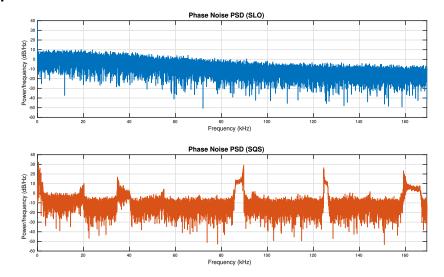

- 100 TB / year long term storage.
- Short ring-buffer with trip snapshot feature for excess data.
- > 280 MB / s input data rate (final).
- Front-end upstream up to or exceeding 1 Gb/s.
- Approx. 80'000 data channels (final count).
- ZeroMQ + Mutlicast (UDP) protocols.
- Multiple thousand distinct data channels manually labeled.

Qualitative

- Developed new DAQ configuration management and configuration data labelling workflow.
- Successfully commissioned for core systems and long term data channels.
- Final base commissioning around Winter 2020.
- Ongoing research on Metadata collection and storage.
- Ongoing research on data preprocessing and reduction.
- Data analysis already started.

Data Acquisition

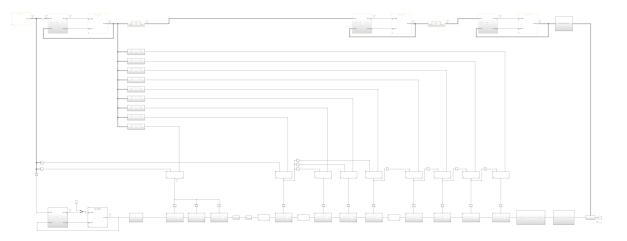
Data Path Overview


Ongoing Projects on LbSync Data

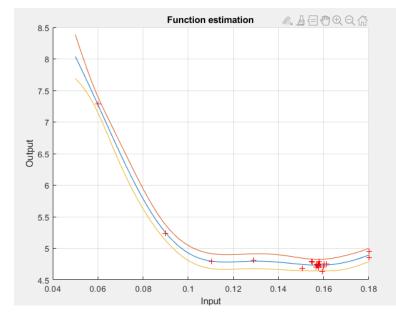
Bachelor Thesis D. Kraft "Link Monitoring"

- Initial experimentation with extracting & processing data from DAQ.
- Slow (< 10 Hz) data analysis for stabilized transmission fibers (days / weeks).
- Look for unexpected correlations & outliers.
- First steps towards slow-data long term health monitoring.

Helmholtz Al Voucher "Laser Health"


- Learn model for laser health based on fast (>300kHz) data.
- Cover wide range of operating conditions.
- Detect when laser leaves "healthy" regime.
- Automated counter-measures to maintain operation.

Ongoing Projects on LbSync Data


XFEL Arrival Time Jitter Model

- Model estimates arrival time jitter that is not observed continuously (dedicated timing tools not always available).
- Used to develop and test algorithms that are not safe enough for the real machine.
- Better understanding of arrival-time jitter propagation through machine.
- Data validates model.

Bayesian Controller Parameter Optimization

- Inexpensive tuning method for unknown cost / performance function.
- Can be designed with safety constraints.
- Goal: 10 dimensional input space optimization in reasonable time.

Future Projects on LbSync Data

Health-aware PLL Controllers

- High-performance controllers that continuously adapt to operating conditions and system health.
- Automatic synthesis from DAQ data.

Predictive Maintenance

- Join knowledge & models from current projects to predictive maintenance application, warning experts & operators of imminent synchronization system failure
- Optionally taking automated counter-measures.
- Extend to more subcomponents of system.
- Middle-layer service on DAQ data.

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Maximilian Schütte MSK / LbSync <u>maximilian.schuette@desy.de</u> +49 40 8998 1811