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Introduction

e Next-gen. experiment (ET, CE, ...) with order-of-magnitude

improvement in S/N ratio

e In the future, high precision will be key

e Approach to obtain PM-expansion using amplitude methods
by now mature

e Multi-loop PM-computations available [Bern, Cheung, Roiban, Shen,
Solon, Zeng ('19); Cheung and Solon ('20); Kallin, Liu, Porto ('20)]

e Spirit to import as much as possible from the knowledge
acquired in perturbative QCD very successful



Amplitude-to-observable pipeline

GR, N =38, QED,...
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Observables

Scattering angle, energy loss, waveforms, ...




Integrands from numerical unitarity

e Automated C++-framework to compute multiloop amplitudes
by numerical unitarity [Abreu, Dormans, Febres Cordero, Ita, Kraus, Page,
MR, Sotnikov ('20)]

e Use finite field methods and functional reconstruction

e Most powerful when final results simple (e.g. 3PM angle)

e Power shown by computing 2-loop 4-graviton amplitudes
[Abreu, Febres Cordero, Ita, Jaquier, Page, MR, Sotnikov ('20)]

e Full quantum, much more than we need for classical physics!

e Geared towards automation and high orders
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Integrals for 2 — 2 scattering

e Integrals common to all approaches (although sometimes one

may avoid certain integrals)
e 2 — 2 scattering with masses, four scales (s,t = ¢, m1, ms)

e Typical integral:

mKM _/ dDg
» (0= q)*((L+ p1)? = mP)((€ — p2)* —m3)




Integrals for 2 — 2 scattering

e Not all integrals for Bhabha scattering at 2 loops known (not
even planar!)

e "N integral“ is eIIiptic [Heller, Manteuffel, Schabinger ('19); Broedel,
Duhr, Dulat, Penante, Tancredi ('19)]

e We are only interested in the "classical” part of these

integrals.



Integrals the BCRSSZ way

e BCRSSZ introduced a method to compute integrals in the
potential region
e Works great at 2 loops. But some drawbacks:

- IR-divergent part not evaluated, but has to cancel with
identical term in the EFT

- Relies on guessing functions based on series expansion

- Not manifestly Lorentz-invariant

- Very challenging a higher loop orders

e Let's do the integrals as we would in perturbative QCD!

( Strategy: use differential equations + method of regions ]




Expansion-by-region [Beneke, Smirmov ('98)]

e Hierarchy of scales in classical limit:
2 8 _m] 2 2
q q

e Relativistic regions:
hard: ¢~ m < short range, UV
soft: £ ~¢q < classical physics

Pl

£r +l—q

P2 1]/2
e Soft region further splits |v| = ¢°/|q|

potential:  (w,£) ~ (|q||v|,|g|) < conservative dynamics
radiation:  (w,€) ~ (lgllv], |q]v])

{ Let’s not split the soft region ! ]




Soft vs. potential region

) Captures dissipate effects
) Manifestly relativistic (no resummation)
¢ Straightforward to use dim-reg
) Avoids artifacts from splitting regions (tail effects)
3 Additional contributions (must upgrade BCRSSZ integrand)
S
g
3 Need more general way to extract classical physics (beyond
potential in EFT)

Use KMO (here) or eikonal (talks by Heissenberg, Veneziano)



KMO formalism [Kosower, Maybee, O’Connell ('19)]

e Appropriate observables have smooth classical limit

e Example: LO (3PM) radiated momentum

RH = /qu5(2p1-q)5(2p2-q)eib'qk“>< ! @

e In general we need virtual integrals and integrals with cuts
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Soft expansion

e Sudakov-parametrization manifest ¢-scaling 51 - /2 Z P1+a/2
Ta

Uq = %, uirq =0, up-usg =y=0+0(q2)-
7

P2 +q/2 P2 — q/2

e Matter propagators eikonalize
(€ —p1)? —m? =2m(u1 - £) + O(¢?)

e Mass scale factors, g-dependence fixed by dimensional analysis

I(¢*y) = (—¢*)*L(y)

{ Only a single variable to all orders in the PM-expansion! ]
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Soft expansion

e Box integral after expansion

IEOft ~ (_QQ)D/2_3 (_q2)—D/2+3/ dPe
dmyme 2 —q)%(uy - £)(—uz - £)

I(y)

e Integrals reduced to a finite set of master integrals using

IBP-identities
0 vH
dPr— |~ | =
/ I {ZQ(Zq)Q..J 0

e Various public implementations (KIRA, FIRE, Reduze,...)

e Compute single-scale master integrals by differential equations
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Canonical differential equations

[Kotikov, Remiddi, Gehrmann (’91),(’98),(’99); Henn ('13)]

Method is divided into steps

. Computing the differential equations (DE)
. Finding a good basis; desirable canonical form

1
2
3.
4

Computing boundary conditions (BND)

. Integrating the system
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Canonical differential equations

[Kotikov, Remiddi, Gehrmann (’91),(’98),(’99); Henn ('13)]

e Most powerful in canonical form [Henn ('13)]

. dlog(wi(y)) | .
;gz(ya €) =€ |:Z Ay gayk\J] Z(y,e€)

—
symbol letters (singularities)

matrix of rational numbers

e Single-variable problem automatized [Lee ('14)] (We used the
program Epsilon [Prausa ('17)])
e At most logarithmic singularities

e Solved iteratively by multiple polylogartihms
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Example DE at 1 loop

e At 1 loop system of 3 master integrals

5 % yrvireT) |0 0 2 %
aiy —ea—ylo <y_\/m> 8 8 0

0
=2arccoshy

e Can be integrated to all orders in e:

Z = € arccoshy X %:}—l— BND

e BND have to be provided. Fixes the region

e E.g. potential BND conditions = potential integral
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Soft Integrals

[Di Vecchia, Heissenberg, Russo, Veneziano; Hermann, Parra-Martinez, MR, Zeng]

e Canonical basis known [Parra-Martinez, MR, Zeng ('20)]

e Additional master integrals (top-level mushroom integrals)

N
e s and u-channel related through analytic continuation
-1 1 o
u-channel Eucl. region /A s-channel
static

Regularity at o = 0 (trivial at 2 loops; constraints at 3 loops)

More checks (numerically with e.g. PySecDec; Integrals are
real in Euclidean region)
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Reverse unitarity [Anastasiou, Melnikov ('02)]

e Reverse unitarity: cut integrals satisfy same IBP and DE

1 1
2u-0—ie  2u-f+ie

27id(2u - £) =

e Sufficient set of BND conditions from unitarity and static limit

e Trivial example:

TiT = coccosny o+ [TT) ~[0] L
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Conclusions

e Integrals are a main bottleneck moving forward in the

PM-expansion (common to all approaches)
e Powerful approach: method of regions + canonical DE

e Computed all integrals relevant at the 2 loop order
(virtual/cut, potential /soft)

e Can compute generic “inclusive enough” observable.
e All integrals from same DE; different BND conditions
e Methods are scalable, ready for 3 loops.

e New result for radiated energy at O(G?) (see Parra-Martinez’
talk)
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