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[ Scattering angle: state of the art
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3PM result: QCD meets Gravity 2018 [BCRSSZ 18; Cheung, Solon 20; GK, Liu, Porto 20]
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with v = uy - ug[= 0], T = /1 + 2v(y — 1)[= h(, V)], v = mymy/M?>.
Directly feeds into the radial action (J = p,b = GM uj):
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What do we know about y,

Schwarzschild limit (v = 0):
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Lots of PN data [Bini, Damour, Geralico 20; + Laporta, Mastrolia 20]
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{ PM-EFT for a worldline action coupled to GR

@

Purely classical approach
» Systematic, extension to finite size and spin exists (see Rafael's talk)

)

Perturbative expansion in G: can use particle physics/amplitudes toolbox

&

Today: only conservative effects in the potential region
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... = extensions to finite-size effects and spinning bodies
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We optimized the EH-Lagrangian by cleverly choosing gauge-fixing terms and adding total

derivatives.

Without field redefinitions: With field redefinitions:
» 2-point Lagrangian: 2 terms » 2-point Lagrangian: 2 terms
» 3-point Lagrangian: 6 terms + 3-point Lagrangian: 4 terms
+ 4-point Lagrangian: 18 terms («<— 3PM) » 4-point Lagrangian: 12 terms

+ 5-point Lagrangian: 36 terms (< 4PM)

We chose to not use field redefinitions to preserve the simple one-particle coupling to the
WL. (Maybe we should for finite-size effects + spin?)
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Having integrated out potential gravitons we have:
Sar = [ An G Lofai(n), za(m)
n=>0

with
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E.o.m. from variation of the action
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allows us to compute the trajectories order by order:
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with b = b; — by the impact parameter and u, the incoming velocty at infinity, fulfilling
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First we compute the deflection using above trajectories:

cattering angle. |
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Physical scattering angle is then simply
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For an alternative derivation of the same integrand using a dynamical WL see Gustav's talk.
Generic structure:
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Cut Feynman integrals with linear and square propagators

+ Always one delta function per loop momentum of the form §(¢ - u,).

» The other combination might appear as a linear propagator in iterations.

» Automatically land in soft classical integrals (see Michael's, Julio's and Carlo's talk)

- 3PM: a single set of square propagators captures all integrals (i.e. the H-family).
» Need a subset of integrals discussed in [BCRSSZ 18; Parra-Martinez, Ruf, Zeng 20]
- In total 876 different integrals (including different 4¢0 prescriptions)

+ 4PM: we were able to embed all integrals using two families of square propagators.
- In total 79332 different integrals (including different +:0 prescriptions)
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[Chetyrkin, Tkackov 81; Gehrmann, Remiddi 2000]
« Very efficient algorithms using integration by part and Lorentz invariance identities to
reduce to small subset of independent integrals, e.g. [Laporta 00, Lee 10]
» Implemented in many public packages, e.g. LiteRed, FIRE, Kira, Reduze, AIR.
+ Delta functions behave like linear propagators under IBPs (exponent = derivative).
Additionally, integrals with negative power delta functions vanish.

» Use CutDS->{...} in LiteRed

« Use RESTRICTIONS={...} in FIRE

- Significant speed-up!
» We use a combination of LiteRed+FIRE6, 3PM: ~5 minutes, 4PM: ~7 hours (4 cores, 32GB
RAM)
+ 3PM: 7 master integrals without linear propagators, 2 master integrals with linear
propagators.
+ 4PM: so far we brought the system down to 149 master integrals. (But we know that we
are missing some symmetries...)



DEQs and the canonical form @ 3PM

Compute the master integrals using differential equations and their canonical form
|Kotikov, Remiddi, Gehrmann 91, 98, 99; Henn 13, 14].

» This method for our integrals was discussed in [Parra-Martinez, Ruf, Zeng 20].

+ Single scale y = u; - uy = (2 — 1)/(22): 8/0x] =M - T

« Having found a canonical form, series exansion in € is very simple

» Boundary conditions are 3D (due to delta functions) static integrals, already familiar

from PN-EFT.

Final Fourier transform is known to all orders:
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(NB: using on-shell constraints we only need terms ~ d/9b*. Eikonal?)



Where are we at NNNLO?

[work with Z. Liu, G. Mogull, R. Porto |

 Simple 5-pt GR Feynman rules v

» Integrand v

» Map to two basic integral families v

» IBP reduction + symmetries ¥ (can we do better?)

» Solve DEQs: different approaches under consideration

+ Directly solve the DEQs

» Find canonical form (many packages: epsilon, Fuchsia, Canonica, INITIAL)

» Numerics + reconstruction

« Boundary conditions: in progress

» Masters without linear propagators v

» Masters with linear propagators: can be reduced to 2D integrals using
symmetrization trick (see e.g. [Cheng, Wu 87; Saotome, Akhoury 13; Parra-Martinez,
Ruf, Zeng 20])



[ Analytic continuation and Firsov's formula

Let us get a feeling of the analytic continuation and some funny games we can play!
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irsov's formula |
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Let's do a detour to the c.o.m. momentum along the trajectory:
H(r,p) = E = p(r, E)

Relation to angle most easily extracted from Firsov's formula
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_Radial action at 4PM
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[ Resummation

Let us truncate our theory at given order n, i.e. M,,, = f,,, = 0 for m > n.

We can try to resum contributions to all orders in G, e.g. for the scattering angle:
4 N\

M = arctan(y/2)

2

xlfia] = ! ul + arctan i
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»  Resummation of A¢ works similar to .

- We can resum parts of S,.

» We can resum f; » contributions for rp;, and .. ("closed form" for real positive roots of
arbitrary order polynomial?)
Difficult for f; 5 3. Anyone can do it?



Conclusions and outlook J

« We have a systematic and efficient setup to study the gravitational 2-body problem in its
full glory.

» Integration is the bottleneck, but there is a lot of new technology around to help us.

» Can we improve our setup by making contact to the eikonal?

* 4PM is not far!

« Using Firsov, we can resum certain contributions to all orders in G.
» Will also help us for analytic continuation of radiation, radiation-reaction



