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Introduction

Positive Geometries are regions in the kinematical space satisfying positivity conditions
[Arkani-Hamed, Bai, Lam]

The key feature of positive geometries is the recursive structure of their boundaries,
which mimics analogous patterns in the singularities of scattering amplitudes.
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At loop level one consider integrands rather than amplitudes due to their simpler
analytical properties: poles & residues rather than cuts & discontinuities

A positive geometry uniquely defines a Canonical form which encodes the amplitude

The canonical form manifest hidden symmetries & yields new computational tools



Introduction

The first positive geometry to be discovered was the Amplituhedron in the context of /' =4 SYM
[Nima & Trnka]

Later [ABHY 1711.09102] it was understood how the Associahedron plays the same role for tree
level bi-adjoint theory. It was quickly generalized at |-loop level [GS 1806.01842, AHST
1912.12948], since then a lot of effort in understanding higher loops.

L>2 loops requires to go beyond the planar level: how to define integrands!?
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The connection of amplitudes & positive geometries does not require SUSY, planarity, etc. etc.
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Tr(¢°) theory
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From fatgraphs to Riemann surfaces
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The color-ordered |/N expansion
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How to choose the loop momenta in a consistent way among all diagrams?




G IObaI IOOP momenta Other approaches to loop labelling: ||§82|8§;;§

V = {punctures} U {marked points} = { X }

[ F = {7}/ q%ig%ﬂ — Hy(S, V)

A global routing of momenta is equivalent to a choice of basis for H(S, V)
P>




Oth h I labelling: 1901.02432
GIObaI IOOP momenta ther approaches to loop labelling s

In the planar case the class [¢;;] is determined by the endpoints de;; = v; — v; = assign dual momenta y; to the

vertices V and the momentum y; — y; to to e;;
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No longer true for non-planar surfaces /



Oth h I labelling: 1901.02432
GIObaI IOOP momenta ther approaches to loop labelling s

The edges of any triangulation 7" contain a basis for H,(S, V): [e'] = Z ¢ el

ecT

Assign loop labels g, to the edges of 7, every other arc is assigned g, = Z C. g

ecT

The Feynman diagram [ dual to any triangulation 7" is now assighed momenta

Problem:

Many triangulations correspond to the same diagram
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The mapping class group

The surface @ has non trivial mapping class group



The mapping class group

i { .3 MCG(S)

Feynman
(fat)graphs

Solution:

Choose a fundamental domain for the action of the MCG
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The integrand

Choose a set of triangulations & dually containing every Feynman diagram once.
Label every arc e with a variable X,

Define the rational function:

WVe obtain the physical integrand by substituting X, — (q[ze] — m?)

|3



The master integrand

The integrands I§7 satisfy recursive properties which descend from those of the master integrand

It is a formal object: “JI d-t = o XA

Uniform recursive behavior, while that of IS(Jis slightly affected by the choice of

The surface §' is obtained by cutting S along X

| 4



Singularities of the integrand

©

A pole with residue given by a forward limit tree amplitude
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Singularities of the integrand

A tree level amplitude from a multiple cut of a vacuum integrand
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Politopality, Projectivity & Completeness

[ABHY] s 4 3 32 1 1S 4 4 3 2 2 1 g
Q=4,dX = 51+ >+ MK K,

= (X13)(X14) — (X;3)(X35) + (X35)(X35) — (Xzs)(X24) + (X14)(X54) \

() is projective: invariant under X — a(X) X.

ILJ_Z" #
Not true for the individual Feynman diagrams

:b c5cs Manifest from BCFWV-like formulae:

X X X X
o=(22 S e e 35
X13 X25 — X4 X13 X24 — X5
/ Orientation of
Feynman Diagrams

indicated by cones

(x) := dlog(x)

\ Good starting point to go beyond

tree level
|8




Politopality, Projectivity & Completeness

[ABHY]
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JoCr
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(See Nima’s @
Zoomplitudes)

\ Good starting point to go beyond

tree level
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Tr'OP|CaI Te|Ch m u I Ie Ir Space [Fock & Goncharov arXiv:math/0510312]

Choose a reference triangulation T

To every arc e on § is associated a geometric
intersection vector geom(e) = {i(e,e’),e’ € T}

Project through b € 05 (“on-shell condition”),
obtaining new vectors y(e) (a.k.a. g-vectors).

Add cones 0 = Conv({y(e),e € T'}) for every
triangulation 7"

The collection of cones 6 form a fan Z§ which is known as Tropical Teichmiiller space or Cluster fan

19
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Tropical Teichmuller Space [FG, STZ]

For surfaces with trivial mapping class group, the fan is complete:

Implied by the existence of ABHY polytope (equivalent via the 2d space-time picture)

20



Tropical Teichmuller Space [FG, STZ]

If MCG(S) is non trivial the fan 2. is not complete:

GE
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It is impossible to find a polytope associated to 2, a projective canonical form nor an integrand
21



Completing the fan

We complete the fan by keeping M copies of the integrand and then adding A-cones:

A

_9

We obtain a new complete fan, a polytope and
a projective form

1

The integrand is recovered via the limit A — oo

Projectivity holds for the full )¢ form only....

What is A?

22



Completing the fan
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Complete the fan by completing the theory!?

We gain some insight on the meaning of €2, by studying the geometry of A-cones.

The dual A—facet follows an entangled factorization:

; New, non cluster-algebraic
Pinch recursive structure!
. ~ closed string

Furthermore, A is homologous to one component of 05 so that g, = Z qip)

l

1
QS — <MX IS+XQA> dX
The pole and residue at A resembles of an extra colorless particle (graviton/dilaton) going on-shell

Politopality/Projectivity/ Completeness = forces “gravity” 23



A plethora of checks: finitely many A’s

Single trace 2-loop integrand Double trace |-loop integrand

MCG(S) = Z MCG(S) = Z

Triple trace 2-loop integrand 3-pts “gravity’” amplitude
MCG(S) = 7° MCG(S) = S,



A plethora of checks: infinitely many A’s

We have found complete fans for these non-Abelian MCG cases:

MCG(S) = SL(2,2) MEG(S) = 8512 . Z2) X 7 MCG(S) = PSL(2,72) X (Z, X Z,)




o o « . GS,S.S jevic 1912.06125
Recursive formulae from Projectivity i e s
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Trees from trees by forgetting a particle |-loop from trees by projecting on tadpoles o



o o « . GS,S.S jevic 1912.06125
Recursive formulae from Projectivity i e s
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Double-trace |-loop from trees by “projecting” on A 27
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Summary

Towards an all loop, all I/N orders Amplituhedron for ¢ theory (No SUSY, no Yangian, no planar limit)
Meaningful definition of non-planar integrands
Manifestly projectivity leads to new recursive formulae

“QCD meets Gravity” : Non-planar positive geometries force on us “gravity”

29



Future directions

Tree “gravity”

f' amps!

A complete fan for every surface

Binary positive geometries/stringy canonical forms? [Arkani-Hamed, He, Lam]

A pure gravitational geometry with factorizing properties in codimension 2 s

Color kinematics duality/double copy? Doubling a bordered surface into a borderless surface

\
S

Loop integration? (Dual polytope — Feynman Trick Polytope?)




Thanks!
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Extra slides
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Double poles & Tadpoles

Double poles are lifted to pairs of simple poles in X variables
l
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¢° bi-adjoint

L = Lpe + 8 [ fbuarpPec

We take as gauge group U(N) and consider the large N expansion

IR AN

fabc
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Some examples

(1234) .
Aoo o

35



Tropical Teichmuller via Laminations

Trop(T) = {X, + X;, = max(X_ + X, X, + X;) }
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Laminations are in |:l correspondence with arcs of a triangulation



Tropical Teichmuller via Laminations

Trop(T) = {X, + X;, = max(X_ + X, X, + X;) }

The intersection number of a lamination
with respect to a triangulation solves the
Tropical mutation relation

Projecting through the boundary
laminations produces an interesting fan
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