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Introduction

• Positive Geometries are regions in the kinematical space satisfying positivity conditions 
[Arkani-Hamed, Bai, Lam]

• The key feature of positive geometries is the recursive structure of their boundaries, 
which mimics analogous patterns in the singularities of scattering amplitudes.

• A positive geometry uniquely defines a Canonical form which encodes the amplitude

𝒜n
∂ 𝒜nL

𝒜nR

• The canonical form manifest hidden symmetries & yields new computational tools

• At loop level one consider integrands rather than amplitudes due to their simpler 
analytical properties: poles & residues rather than cuts & discontinuities 
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Introduction

• The first positive geometry to be discovered was the Amplituhedron in the context of  
[Nima & Trnka]

𝒩 = 4 SYM

• Later [ABHY 1711.09102] it was understood how the Associahedron plays the same role for tree 
level bi-adjoint theory.   It was quickly generalized at 1-loop level [GS 1806.01842, AHST 
1912.12948], since then a lot of effort in understanding higher loops.

•  L>2 loops requires to go beyond the planar level: how to define integrands?

• The connection of amplitudes & positive geometries does not require SUSY, planarity, etc. etc. 

Cut
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Outline

1. Integrands beyond the planar limit

2. Positive Geometries...and “gravity”

3. Conclusions
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 theoryTr(ϕ3)

ℒ = ℒfree + g Tr(ϕ3) ϕ = ϕi
j , i = 1,…, N

→
i

i j

j
kk
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An = An( ⃗p | ⃗ij )



From fatgraphs to Riemann surfaces

Γ S(Γ) = ⋃
t∈T

[at, bt, ct]

Γ ⃗b
g,p = {Γ |S(Γ) is of genus g, has p punctures and boundaries ⃗b }

t = [a, b, c]

a

bc
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a
cb

B A
C

S(Γ) = [a, b, c] ∪ [A, C, B]

a
bc C

A
B

S(Γ) = [a, b, c] ∪ [A, B, C]



The color-ordered 1/N expansion

An( ⃗p | ⃗ij ) = (ig)n−2
∞

∑
L=0

λL ∑⃗
b

C ⃗b ∑
p,g

( 1
N )

L−p

A ⃗b
p,g( ⃗p)

2g + p + b = L + 1C ⃗b = ∏
b∈ ⃗b

∏
k∈b

δik,jk+1
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A ⃗b
p,g = ∑

Γ∈Γ ⃗b
p,g

∫ dDℓ IΓ(p, ℓ) = ∫ dDℓ ∑
Γ∈Γ ⃗b

p,g

IΓ(p, ℓ) = ∫ dDℓ I ⃗b
p,g

How to choose the loop momenta in a consistent way among all diagrams?

λ = g2N



Global loop momenta

/{ ,
3

∑
i=1

qi = 0} = H1(S, V){ }qi

qi
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V = {punctures} ∪ {marked points} = { }

Other approaches to loop labelling: 1901.02432           
                                                    1802.09395

q2

q3q1

A global routing of momenta is equivalent to a choice of basis for H1(S, V)

ℓ

ℓ + p1 ℓ
ℓ + p1

p1
p1

p1

p2

p3

p1 + p2 + p3



Global loop momenta
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Other approaches to loop labelling: 1901.02432           
                                                    1802.09395

In the planar case the class  is determined by the endpoints   assign dual momenta  to the 
vertices  and the momentum  to to 

[eij] ∂eij = vi − vj ⇒ yi
V yi − yj eij

y0 y1

y2y3

y1 − y0
y2 − y1

y3 − y2

e

e′ 
[e] ≠ [e′ ]

No longer true for non-planar surfaces



Global loop momenta

Problem:

Many triangulations correspond to the same diagram
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• The edges of any triangulation  contain a basis for :    

• Assign loop labels  to the edges of , every other arc is assigned 

• The Feynman diagram  dual to any triangulation  is now assigned momenta

T H1(S, V ) [e′ ] = ∑
e∈T

ce [e]

q[e] T q[e′ ] = ∑
e∈T

ce q[e]

Γ′ T′ 

Other approaches to loop labelling: 1901.02432           
                                                    1802.09395



The mapping class group

has non trivial mapping class groupThe surface

Dehn
Twist
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The mapping class group

MCG(S){Triangulations

{Feynman
(fat)graphs

Solution:

12
Choose a fundamental domain for the action of the MCG



The integrand

• Choose a set of triangulations  dually containing every Feynman diagram once. 

• Label every arc  with a variable 

• Define the rational function:

𝒯

e Xe

I𝒯
S (X) = ∑

T∈𝒯

1
∏e∈T Xe

We obtain the physical integrand by substituting Xe → (q2
[e] − m2)
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The master integrand

IS(X) = ∑
T

1
∏e∈T Xe

• It is a formal object:  “  ”

• Uniform recursive behavior, while that of is slightly affected by the choice of 

∫ I dDℓ = ∞ × A

I𝒯
S 𝒯
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Res IS |X = IS′ 
(X′ )

The integrands  satisfy recursive properties which descend from those of the master integrandI𝒯
S

The surface  is obtained by cutting  along S′ S X



Singularities of the integrand

Cut

Res I( ⃗a )( ⃗b )
0,0 |X = I( ⃗a L,−, ⃗b ,+, ⃗a R)

0,0

X⃗a ⃗a

⃗b
⃗b

−

+

A pole with residue given by a forward limit tree amplitude
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Singularities of the integrand

Cut

Res I∅
0,p |Xi

= I(1,…,p+3)
0,0

A tree level amplitude from a multiple cut of a vacuum integrand

Xi
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Outline

1. Integrands beyond the planar limit

2. Positive Geometries...and “gravity”

3. Conclusions
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Politopality, Projectivity & Completeness

(x) := dlog(x)

= (X13)(X14) − (X13)(X35) + (X25)(X35) − (X25)(X24) + (X14)(X24)

Ω = An dX + + + +

 is projective: invariant under . 
Not true for the individual Feynman diagrams    
Manifest from BCFW-like formulae:

Ω X → α(X) X

18

Ω = ( X24

X13 ) ( X14

X25 − X24 ) + ( X25

X13 ) ( X35

X24 − X25 )

=
[ABHY]

Good starting point to go beyond 
tree level

Orientation of 
Feynman Diagrams 
indicated by cones



Politopality, Projectivity & Completeness

(x) := dlog(x)

= (X13)(X14) − (X13)(X35) + (X25)(X35) − (X25)(X24) + (X14)(X24)
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Ω X → α(X) X

18

Ω = ( X24

X13 ) ( X14

X25 − X24 ) + ( X25

X13 ) ( X35

X24 − X25 )

=

2d space-time
(See Nima’s @ 
Zoomplitudes)

[ABHY]

Good starting point to go beyond 
tree level

Orientation of 
Feynman Diagrams 
indicated by cones



Tropical Teichmüller Space

• Choose a reference triangulation 

• To every arc  on  is associated a geometric 
intersection vector 

• Project through  (“on-shell condition”), 
obtaining new vectors  (a.k.a. g-vectors).

• Add cones  for every 
triangulation 

T

e S
geom(e) = {i(e, e′ ), e′ ∈ T}

b ∈ ∂S
χ(e)

σ = Conv({χ(e), e ∈ T′ })
T′ 

The collection of cones  form a fan  which is known as Tropical Teichmüller space or Cluster fanσ ΣT
S

19

[Fock & Goncharov arXiv:math/0510312] 
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Tropical Teichmüller Space

• Choose a reference triangulation 

• To every arc  on  is associated a geometric 
intersection vector 

• Project through  (“on-shell condition”), 
obtaining new vectors  (a.k.a. g-vectors).

• Add cones  for every 
triangulation 

T

e S
geom(e) = {i(e, e′ ), e′ ∈ T}

b ∈ ∂S
χ(e)

σ = Conv({χ(e), e ∈ T′ })
T′ 

e

b

The collection of cones  form a fan  which is known as Tropical Teichmüller space or Cluster fanσ ΣT
S

Lamination
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[Fock & Goncharov arXiv:math/0510312] 



Tropical Teichmüller Space [FG, STZ] 

For surfaces with trivial mapping class group, the fan is complete:

20

Implied by the existence of ABHY polytope (equivalent via the 2d space-time picture)



Tropical Teichmüller Space [FG, STZ] 

If  is non trivial the fan  is not complete:MCG(S) ΣS

Δ

It is impossible to find a polytope associated to , a projective canonical form nor an integrandΣS

Δ

21



Completing the fan

Δ

ΩS = (M × Is+
1
Δ

ΩΔ) dX

We complete the fan by keeping  copies of the integrand and then adding -cones: M Δ

The integrand is recovered via the limit Δ → ∞

What is ?Δ

Projectivity holds for the full  form only....ΩS

We obtain a new complete fan, a polytope and 
a projective form
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Completing the fan

Δ

???

??? ΩS = (M × Is+
1
Δ

ΩΔ) dX

We complete the fan by keeping  copies of the integrand and then adding -cones: M Δ

The integrand is recovered via the limit Δ → ∞

What is ?Δ

Projectivity holds for the full  form only....ΩS

We obtain a new complete fan, a polytope and 
a projective form
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Complete the fan by completing the theory?

We gain some insight on the meaning of  by studying the geometry of -cones. 

The dual facet follows an entangled factorization:

ΩΔ Δ
Δ−

Furthermore,  is homologous to one component of  so that 

The pole and residue at  resembles of an extra colorless particle (graviton/dilaton) going on-shell

Δ ∂S q[Δ] = ∑
i

q[bi]

Δ

 closed string∼

Politopality/Projectivity/Completeness   forces “gravity”⇒

New, non cluster-algebraic 
recursive structure!Pinch
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ΩS = (M × Is+
1
Δ

ΩΔ) dX



A plethora of checks: finitely many ’sΔ

MCG(S) = S3MCG(S) = ℤ3

Δ

Cut

Pinch

MCG(S) = ℤ MCG(S) = ℤ

3-pts “gravity” amplitude

Double trace 1-loop integrandSingle trace 2-loop integrand

Triple trace 2-loop integrand



A plethora of checks: infinitely many ’sΔ

MCG(S) = SL(2,ℤ) MCG(S) = SL(2,ℤ) × ℤ MCG(S) = PSL(2,ℤ) ⋉ (ℤ2 × ℤ2)

We have found complete fans for these non-Abelian MCG cases:



Recursive formulae from Projectivity

X24

X26

X25

�(X24 )
�(X26 )

�(X25 )

Y

� (Y)

Ω(1,…,n)
0,0 =

n

∑
i=4

d log (
X2,i

X1,3 ) ∧ Ω̂(2,…,i−1)
0,0 ∧ Ω̂(i,…,1)

0,0 Ω(1,…,n)
0,1 =

n

∑
i=1

dlog ( Xi

X0 ) Ω̂(…,i,−,+,…)
0,0

Trees from trees by forgetting a particle 1-loop from trees by projecting on tadpoles 26

[GS, S. Stanojevic 1912.06125] 
[Arkani-Hamed et al. 1703.04541]
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Recursive formulae from Projectivity

Ω( ⃗a )( ⃗b )
0,0 = ∑

i,I

dlog (
Xi,I

Δ ) Ω̂( ⃗a ⊕i,I
⃗b )

0,0

Double-trace 1-loop from trees by “projecting” on Δ

⃗a ⊕i,I
⃗b = (a1, …, ai, − , bI+1, …, bI, + , ai+1, …)

Xi,I :

⃗a

⃗b

I

i

⃗a

⃗b
I

+

−

i

Δ

X1,3

X2,3

1 3 2
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[GS, S. Stanojevic 1912.06125] 
[Arkani-Hamed et al. 1703.04541]



Outline

1. Integrands beyond the planar limit

2. Positive geometries...and “gravity”

3. Conclusions
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Summary

Towards an all loop, all 1/N orders Amplituhedron for  theory (No SUSY, no Yangian, no planar limit)

Meaningful definition of non-planar integrands

Manifestly projectivity leads to new recursive formulae

 “QCD meets Gravity” :  Non-planar positive geometries force on us “gravity”

ϕ3
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Future directions

A complete fan for every surface

Binary positive geometries/stringy canonical forms? [Arkani-Hamed, He, Lam]

A pure gravitational geometry with factorizing properties in codimension 2

Color kinematics duality/double copy? Doubling a bordered surface into a borderless surface

Loop integration? (Dual polytope  Feynman Trick Polytope?)→

30

Tree “gravity” 
amps?



Thanks!
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Extra slides
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Double poles & Tadpoles

i

j

IS(X) =
1

XijXji…
+ … →

1
(ℓ2 − m2)2…

+ …

X1 → ℓ2 − m2

X2 → (ℓ + p)2 − m2

X3,4 → − m2 33

Double poles are lifted to pairs of simple poles in  variablesX

Tadpoles are killed by  limits: bi-adjoint from X → ∞ Tr(ϕ3)

IS(X) =
1

X1X2
+

1
X1X3

+
1

X2X4 X3,4→∞

1
X1X2

→
1

ℓ2(ℓ + p)2

1
ℓ2 − m2

1
(ℓ + p)2 − m2

+

+
1

−m2 ( 1
ℓ2 − m2

+
1

(ℓ + p)2 − m2 )

+ +



 bi-adjointϕ3

ℒ = ℒfree + g fabc fabcϕaaϕbbϕcc

We take as gauge group U(N) and consider the large N expansion

fabc

→ −
i

i j

j
kk

i

i j

j
kk
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Some examples

A(1234)
0,0 = +

A(12)(34)
0,0 =

A(123)
0,1 = + + + … 35



Tropical Teichmüller via Laminations

Trop(T) = {Xa + Xb = max(Xc + Xd, Xe + Xf)}

Laminations are in 1:1 correspondence with arcs of a triangulation
36



Tropical Teichmüller via Laminations

Trop(T) = {Xa + Xb = max(Xc + Xd, Xe + Xf)}

The intersection number of a lamination 
with respect to a triangulation solves the
Tropical mutation relation

Projecting through the boundary 
laminations produces an interesting fan
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