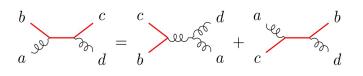
Loop-Level Double Copy for Massive Quantum Particles

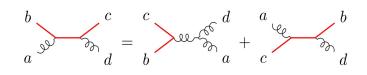
Ingrid A. Vazquez-Holm Based on work with John Joseph Carrasco

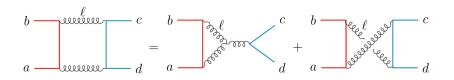
QCD Meets Gravity, 4 Dec 2020

Color-kinematics and factorization are enough to build massive amplitudes



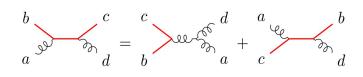
Color-kinematics and factorization are enough to build massive amplitudes

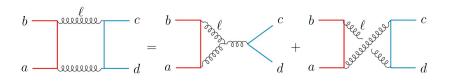




Color-kinematics duality for massive amplitudes can be manifest at loop level

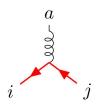
Color-kinematics and factorization are enough to build massive amplitudes



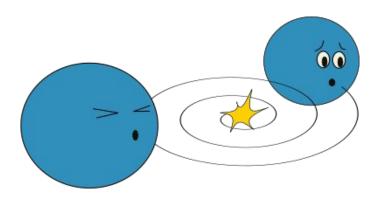


Color-kinematics duality for massive amplitudes can be manifest at loop level

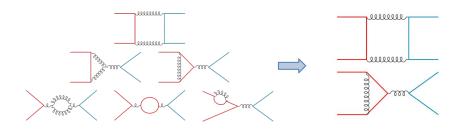
Can use the same kinematic building blocks for massive scalars charged in fundamental and adjoint

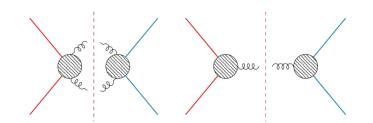


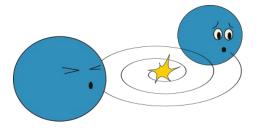
Why is gravity hard with traditional methods?



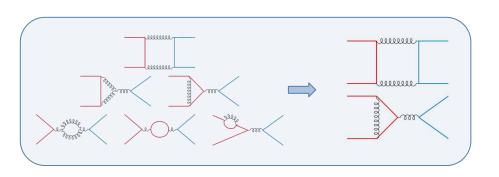
Use the color-kinematics duality and unitarity methods to find massive amplitudes

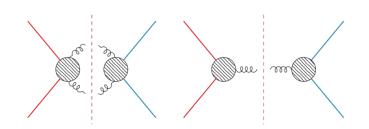


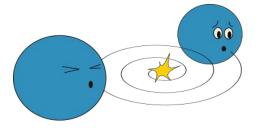




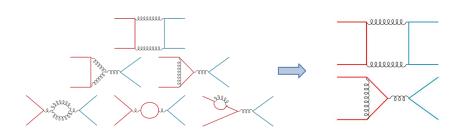
Use the color-kinematics duality and unitarity methods to find massive amplitudes

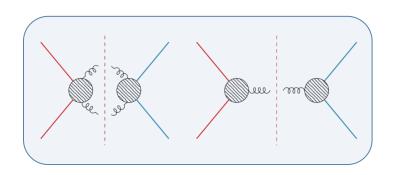


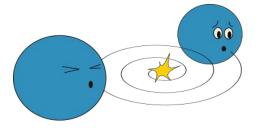




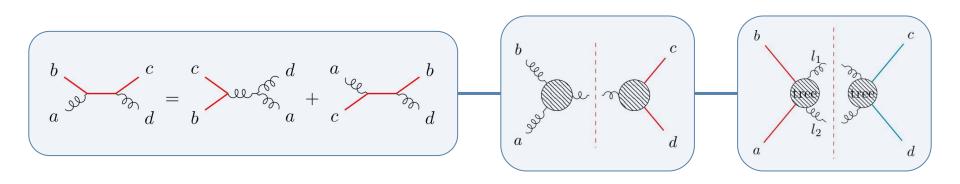
Use the color-kinematics duality and unitarity methods to find massive amplitudes



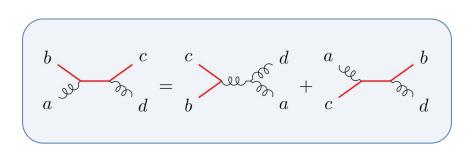




Bootstrapping tree-level amplitudes and loop-level using the color-kinematics duality



The color-kinematics duality



Color-kinematics duality

Color-dual representation: kinematic weights ~ color weights

Bern, Carrasco, Johansson '08, Bern, Carrasco, Johansson '10

Only need small number of basis graphs (Solves combinatorics problem!)

Weaves a web of theories (Recycling is good)

See review: Bern, Carrasco, Chiodaroli, Johansson, Roiban '19

Color-kinematics for many representations (adjoint, three-algebras, arbitrary)

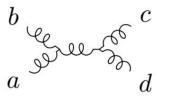
Bargheer, He, McLoughlin '12

Massive matter in the fundamental

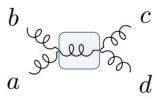
Johansson, Ochirov '16, Plefka, Shi, Wang '19, Bjerrum-Bohr, Cristofoli, Damgaard, Gomez '19, Luna, Nicholson, O'Connell, White '17 Haddad, Helset '20

$$\mathcal{A}_{m}^{(L)} = i^{L} g^{m-2+2L} \sum_{i \in \Gamma} \int \prod_{l=1}^{L} \frac{d^{D} p_{l}}{(2\pi)^{D}} \frac{1}{S_{i}} \frac{n_{i} C_{i}}{\prod_{\alpha_{i}} (p_{\alpha_{i}}^{2} - m_{\alpha_{i}}^{2})}$$

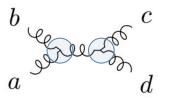
$$\frac{n_i C_i}{\prod_{\alpha_i} (p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$



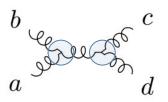
$$\frac{n_i C_i}{\prod_{\alpha_i} (p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$



$$\frac{n_i C_i}{\prod_{\alpha_i} (p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$



$$\frac{n_i C_i}{\prod_{\alpha_i} (p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$



$$\frac{n_i C_i}{\prod_{\alpha_i} (p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$

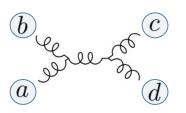
 $f^{abl}f^{lca}$

$$\frac{n_i C_i}{\prod_{\alpha_i} (p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$

$$f^{abl}f^{lcd} = f^{bcl}f^{lda} + f^{cal}f^{lbd}$$

$$b \leftarrow c \quad c \quad d \quad a \quad b$$

$$a \quad d \quad b \quad d$$



$$\frac{\overline{n_i}C_i}{\prod_{\alpha_i}(p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$

$$\begin{bmatrix} b & c \\ c & d \end{bmatrix}$$

$$\frac{\overline{n_i}C_i}{\prod_{\alpha_i}(p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$

$$n(a, b, c, d) = n(b, c, d, a) + n(c, a, b, d)$$

$$\begin{bmatrix} b & c \\ a & \end{bmatrix}$$

$$\frac{n_i C_i}{\prod_{\alpha_i} (p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$

$$n(a, b, c, d) = n(b, c, d, a) + n(c, a, b, d)$$

Antisymmetries of graph weights

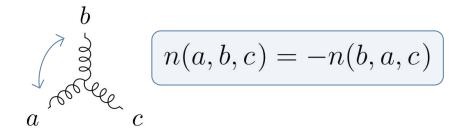
$$\int_{a}^{b} \int_{c}^{b} \int_{c}^{abc} = -f^{ba}$$

$$\begin{bmatrix} b & c \\ a & \end{bmatrix}$$

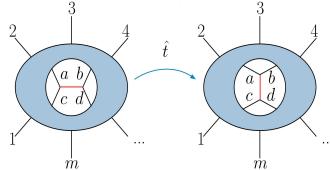
$$\frac{n_i C_i}{\prod_{\alpha_i} (p_{\alpha_i}^2 - m_{\alpha_i}^2)}$$

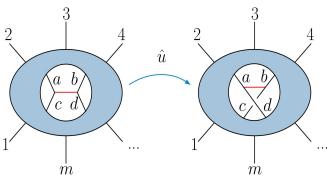
$$n(a, b, c, d) = n(b, c, d, a) + n(c, a, b, d)$$

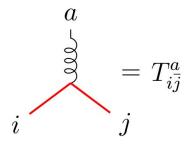
Antisymmetries of graph weights

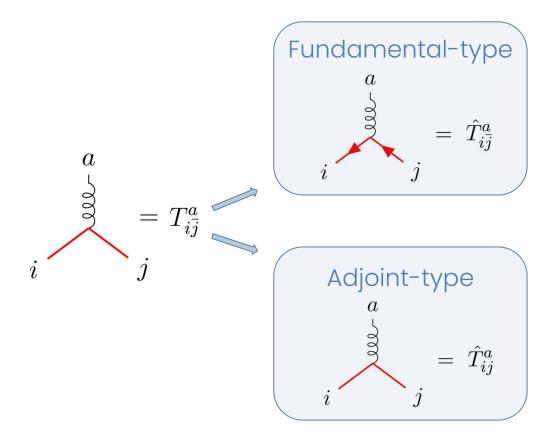


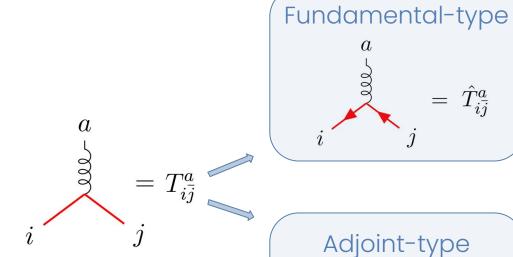
$$n_i - n_j = n_k \qquad \Leftrightarrow \qquad c_i - c_j = c_k,$$
 $n_i \to -n_i \qquad \Leftrightarrow \qquad c_i \to -c_i$



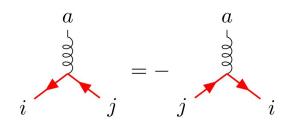


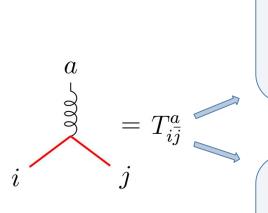


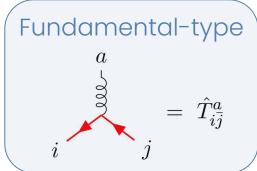


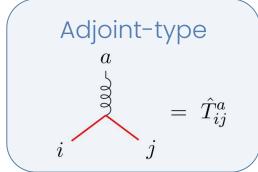


Want antisymmetry:

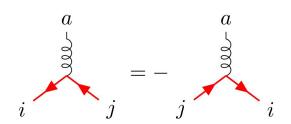








Want antisymmetry:

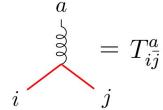


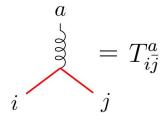
Introduce:

$$T_{i\bar{j}}^a = \hat{T}_{i\bar{j}}^a$$

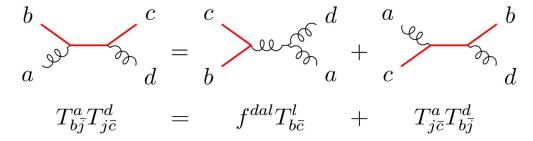
$$T_{\bar{j}i}^a = -T_{i\bar{j}}^a$$

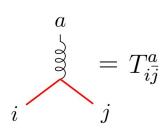
c(graph) x n(graph)



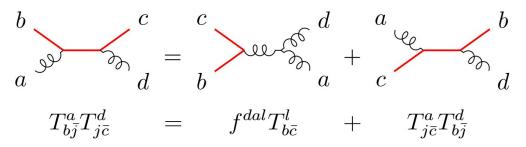


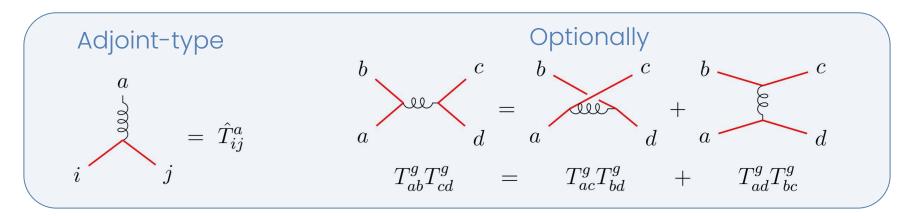
Jacobi-like relations





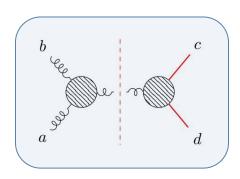
Jacobi-like relations

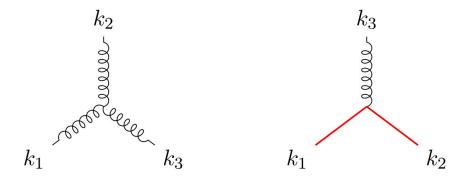


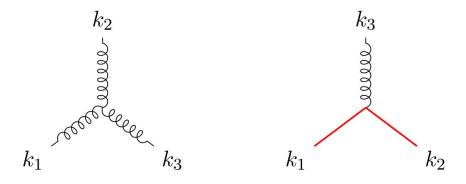


$$\begin{array}{c}
b \\
c \\
c \\
d
\end{array} = \begin{array}{c}
c \\
c \\
d
\end{array} = \begin{array}{c}
c$$

Construction

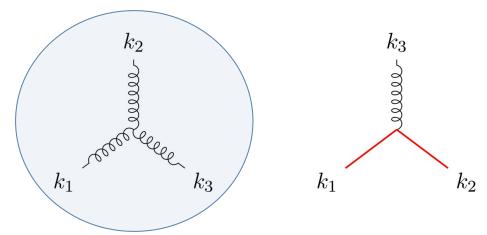






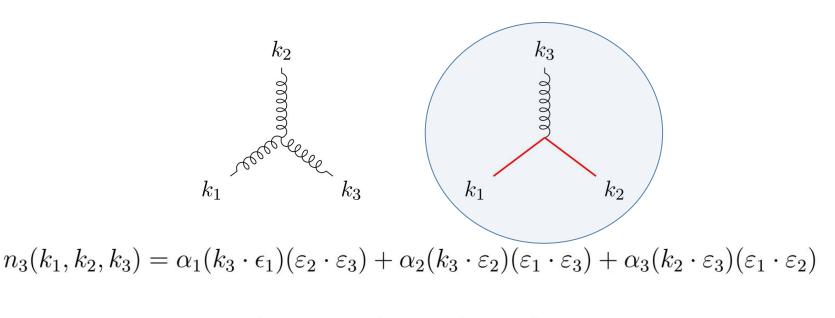
 $n_3(k_1, k_2, k_3)$

 $n_{3,2}(k_1^m, k_2^m, k_3)$



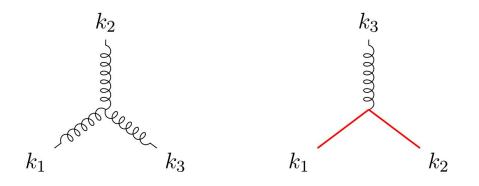
$$n_3(k_1, k_2, k_3) = \alpha_1(k_3 \cdot \epsilon_1)(\varepsilon_2 \cdot \varepsilon_3) + \alpha_2(k_3 \cdot \varepsilon_2)(\varepsilon_1 \cdot \varepsilon_3) + \alpha_3(k_2 \cdot \varepsilon_3)(\varepsilon_1 \cdot \varepsilon_2)$$

$$n_{3,2}(k_1^m, k_2^m, k_3)$$



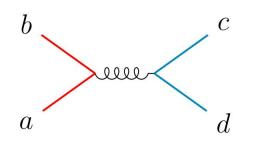
$$n_{3,2}(k_1^m, k_2^m, k_3) = \alpha_1(k_1 \cdot \varepsilon_3)$$

3-point amplitudes are completely determined by color-kinematics and symmetries

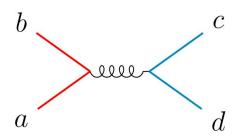


$$n_3(k_1, k_2, k_3) = \alpha_1 \big((k_3 \cdot \epsilon_1)(\varepsilon_2 \cdot \varepsilon_3) - (k_3 \cdot \varepsilon_2)(\varepsilon_1 \cdot \varepsilon_3) + (k_2 \cdot \varepsilon_3)(\varepsilon_1 \cdot \varepsilon_2) \big)$$

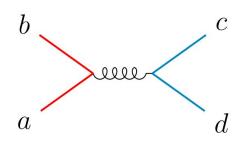
$$n_{3,2}(k_1^m, k_2^m, k_3) = \alpha_1(k_1 \cdot \varepsilon_3)$$



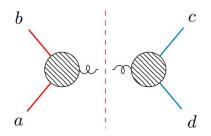
$$n_{4,2}(a,b,c,d) = \alpha_1(a \cdot b) + \alpha_2(b \cdot b) + \alpha_3(b \cdot c) + \alpha_4(c \cdot c)$$



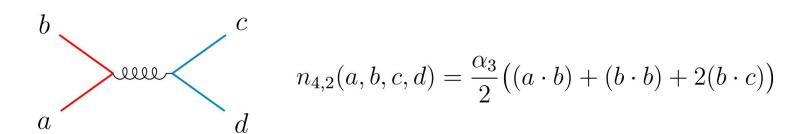
$$n_{4,2}(a,b,c,d) = \frac{\alpha_3}{2} ((a \cdot b) + (b \cdot b) + 2(b \cdot c))$$



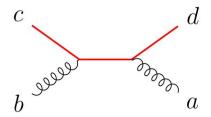
$$n_{4,2}(a,b,c,d) = \frac{\alpha_3}{2} ((a \cdot b) + (b \cdot b) + 2(b \cdot c))$$

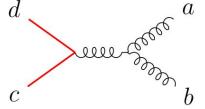


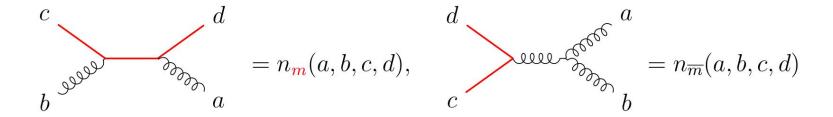
$$\sum A_{3,2}(a,b,l^s)A_{3,2}(-l^{\bar{s}},c,d) = n_{4,2}(a,b,c,d)|_{(a+b)^2=0}$$

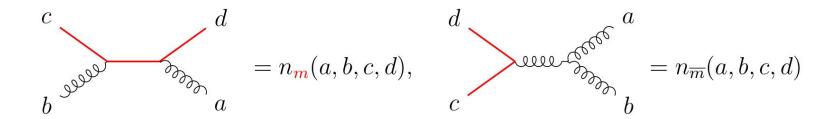


$$A_{4,2}^{\text{tree}}(a, b, c, d) = -\frac{(a \cdot b) + (b \cdot b) + 2(b \cdot c)}{2[(a \cdot b) + (b \cdot b)]}$$









Color-kinematics

$$a = c$$

$$c = b$$

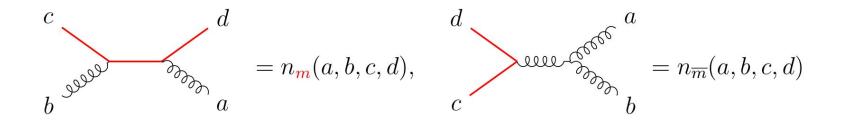
$$d = b$$

$$a - d$$

$$a$$

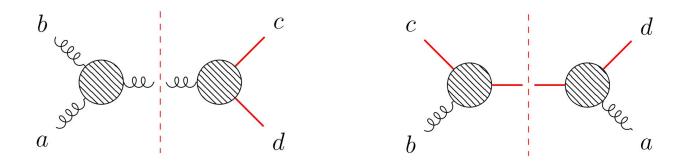
$$a$$

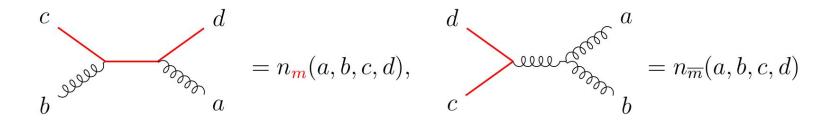
$$n_{\overline{m}}(a, b, c, d) = n_{\underline{m}}(a, b, c, d) - n_{\underline{m}}(b, a, c, d)$$



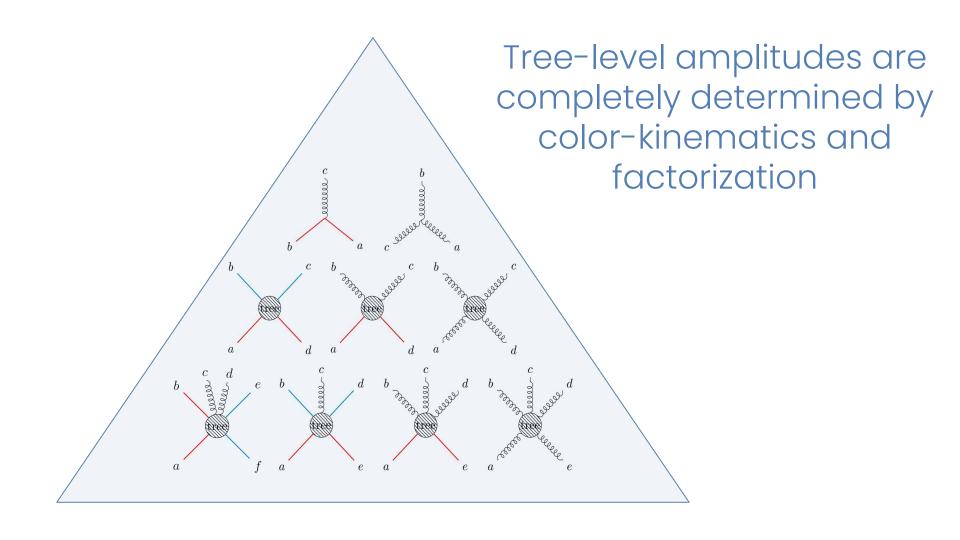
$$n_{\mathbf{m}}(a, b, c, d) = (\alpha_1(a \cdot b) + \alpha_2(b \cdot c) + \alpha_3(c \cdot c)) (\varepsilon_a \cdot \varepsilon_b) + \alpha_4(b \cdot \varepsilon_a)(a \cdot \varepsilon_b) + \alpha_5(c \cdot \varepsilon_a)(a \cdot \varepsilon_b) + \alpha_6(b \cdot \varepsilon_a)(c \cdot \varepsilon_b) + \alpha_7(c \cdot \varepsilon_a)(c \cdot \varepsilon_b)$$

Factorization

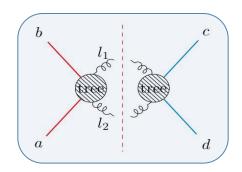




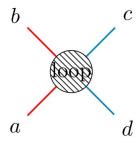
$$n_{\mathbf{m}}(a, b, c, d) = (c \cdot \varepsilon_b) \left((b \cdot \varepsilon_a) + (c \cdot \varepsilon_a) \right) - \frac{1}{2} (b \cdot c) (\varepsilon_a \cdot \varepsilon_b)$$
$$n_{\overline{m}}(a, b, c, d) = n_{\mathbf{m}}(a, b, c, d) - n_{\mathbf{m}}(b, a, c, d)$$



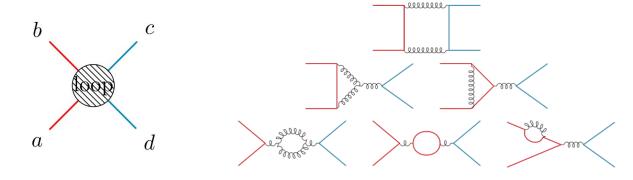
Construction loop-level



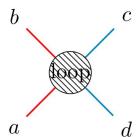
4-point one-loop

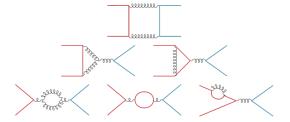


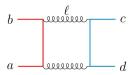
4-point one-loop



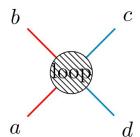
4-point one-loop

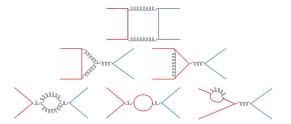


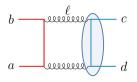




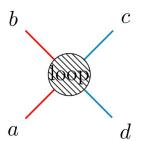
4-point one-loop

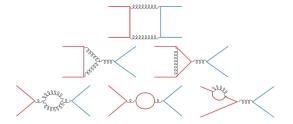


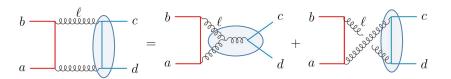




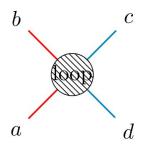
4-point one-loop

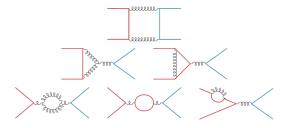


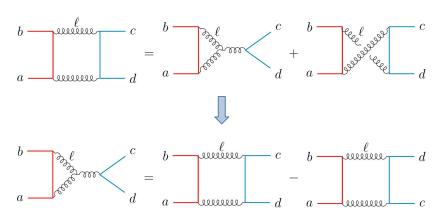




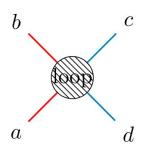
4-point one-loop

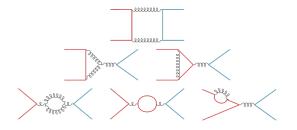






4-point one-loop

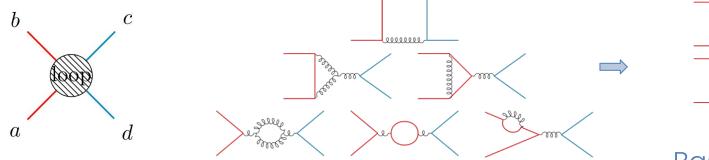


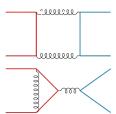


$$\begin{array}{c} b \\ a \\ \end{array} \begin{array}{c} c \\ d \\ \end{array} \begin{array}{c}$$

لللللللل

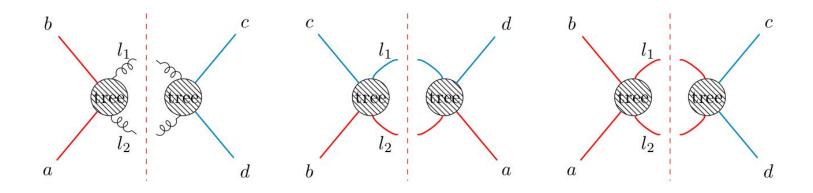
4-point one-loop



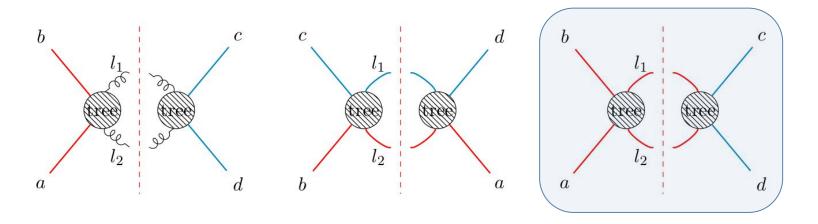


Basis graphs

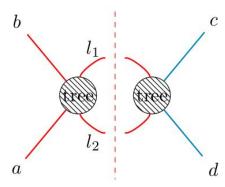
4-point one-loop

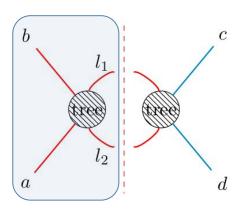


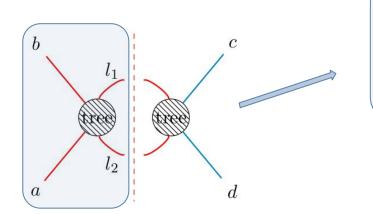
4-point one-loop



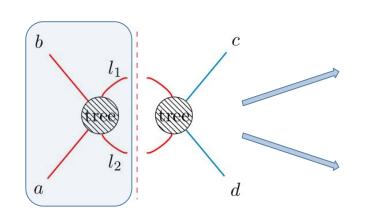
Ordered cut?







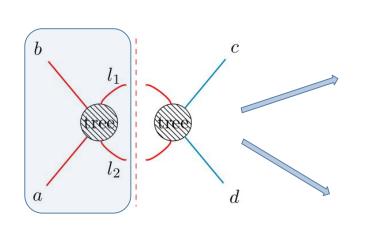
$$A^{\text{tree}}(a, b, c, d) = \sum_{a}^{b} \underbrace{\begin{pmatrix} c & b \\ d & + a \end{pmatrix}}_{c} \underbrace{\begin{pmatrix} c & b \\ d & - a \end{pmatrix}}_{c} = \frac{n_s}{s} + \frac{n_t}{t}$$

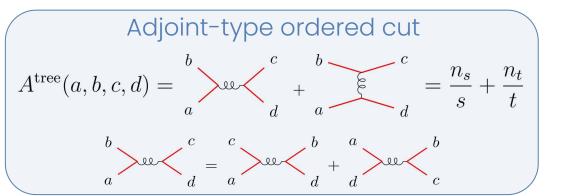


$$A^{\text{tree}}(a,b,c,d) = \sum_{a}^{b} \underbrace{\begin{pmatrix} c & b \\ d & + a \end{pmatrix}}_{c} \underbrace{\begin{pmatrix} c & b \\ d & - a \end{pmatrix}}_{c} \underbrace{\begin{pmatrix} c & b \\ d$$

Fundamental-type ordered cut

$$A^{\text{tree}}(\overline{a}, b, \overline{c}, d) = \sum_{a}^{b} \sum_{d}^{c} = \frac{n_s}{s}$$





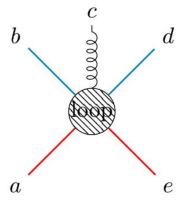
Fundamental-type ordered cut

$$A^{\text{tree}}(\overline{a}, b, \overline{c}, d) = \sum_{a}^{b} \underbrace{c}_{d} = \frac{n}{s}$$

$$A^{\text{tree}}(\overline{a}, d, \overline{c}, b) = \begin{bmatrix} a & b \\ a & d \end{bmatrix} = \frac{n}{b}$$

5-point one-loop

Encodes first correction to radiation



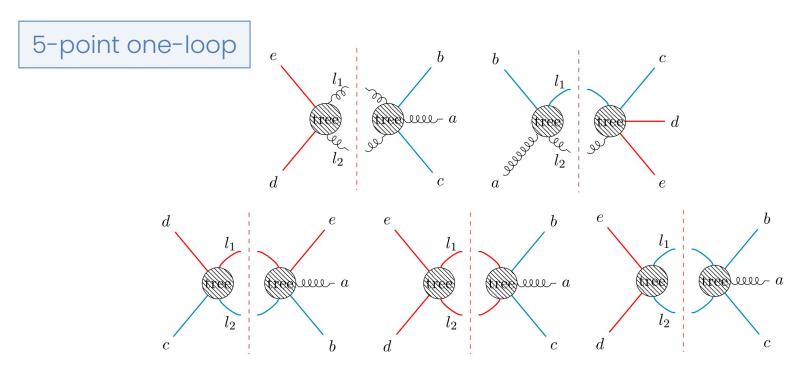
5-point one-loop 6 basis graphs 33 topologies

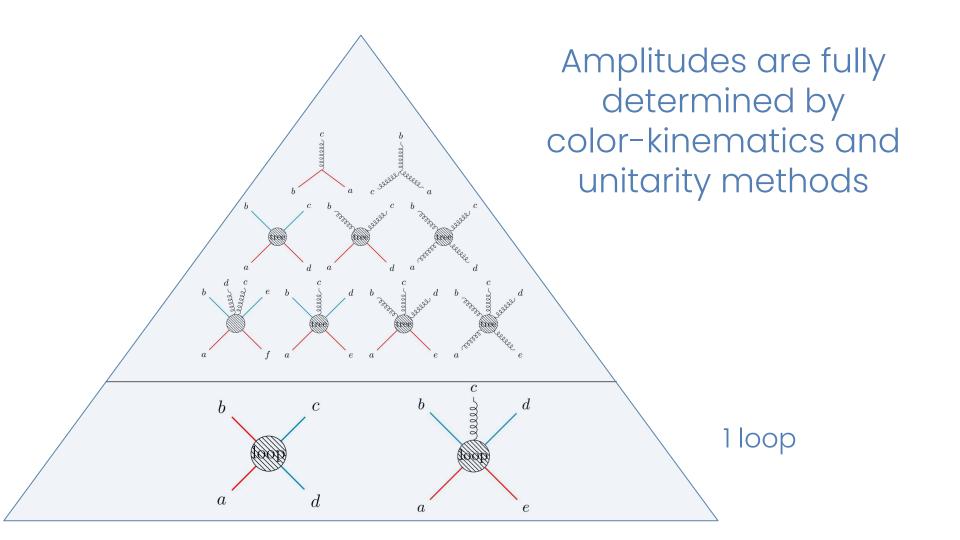
5-point one-loop

33 topologies

10 296 parameters 6 basis graphs

1872 parameters





Double copy to obtain N=0 supergravity predictions

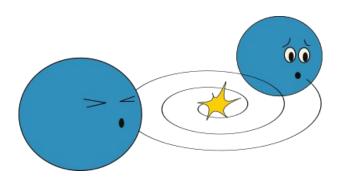
$$S = \int d^Dx \sqrt{-g} \left[-\frac{1}{2}R + \frac{1}{2(D-2)} \partial^\mu \phi \partial_\mu \phi + \frac{1}{6} e^{-4\phi/(D-2)} H^{\lambda\mu\nu} H_{\lambda\mu\nu} \right] \quad \text{Scherk, Schwarz '74 Gross, Sloan '87}$$

Matter terms

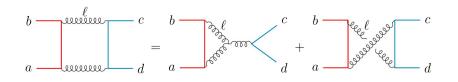
Johansson, Ochirov '16,'19 Bautista, Guevara '19 Plefka, Shi, Wang '19

Future work includes

exploring double copies directly to pure gravity predictions,
massive higher-spins in arbitrary rep,
generating classical observables,
extending to higher loop order (2-loops and more)!

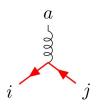


Color-kinematics and factorization are enough to build massive amplitudes



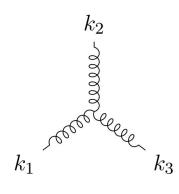
Color-kinematics duality for massive amplitudes can be manifest at loop level

Can use the same kinematic building blocks for massive scalars charged in fundamental and adjoint



Extra

3-point amplitudes are completely determined by color-kinematics and symmetries



Build the ansatz from a kinematic basis

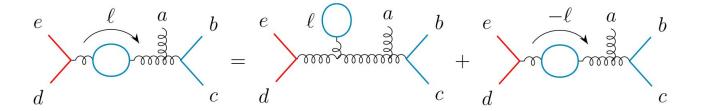
$$n_3(k_1, k_2, k_3) = \alpha_1(k_3 \cdot \epsilon_1)(\varepsilon_2 \cdot \varepsilon_3) + \alpha_2(k_3 \cdot \varepsilon_2)(\varepsilon_1 \cdot \varepsilon_3) + \alpha_3(k_2 \cdot \varepsilon_3)(\varepsilon_1 \cdot \varepsilon_2)$$

Momentum conservation Transversality

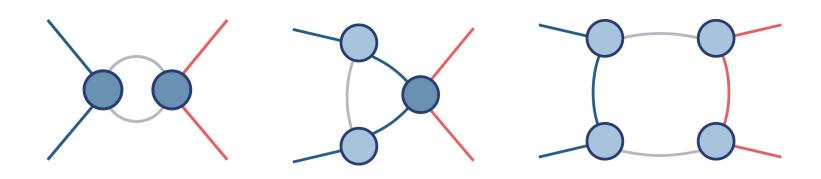
$$k_1 + k_2 + k_3 = 0$$
$$\varepsilon_i \cdot k_i = 0$$

$$k_2 \cdot \varepsilon_1 = (-k_1 - k_3) \cdot \varepsilon_1 = -k_3 \cdot \varepsilon$$

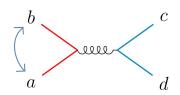
Tadpoles can be reached using color-kinematics



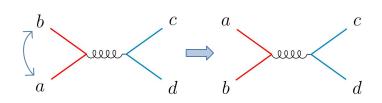
We verified on bubble, triangle and box cuts



What are symmetries of the graph?

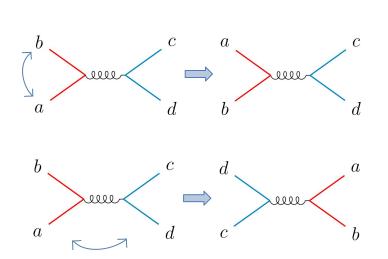


What are symmetries of the graph?



$$n_{4,2}(b, a, c, d) = -n_{4,2}(a, b, c, d)$$

What are symmetries of the graph?



$$n_{4,2}(b, a, c, d) = -n_{4,2}(a, b, c, d)$$

$$n_{4,2}(c, d, a, b) = n_{4,2}(a, b, c, d)$$