

All loop Structures in Supergravity

AGNESE BISSI, UPPSALA UNIVERSITY, DEC 4TH 2020- QCD MEETS GRAVITY 2020

based mostly on

- A.B., G. Fardelli and A. Georgoudis, arXiv: 2010.12557
- A.B., G. Fardelli and A. Georgoudis, arXiv: 2002.04604

Goals

- Understand better the unitarity structure of $AdS_5 \times S^5$ supergravity amplitudes, at all loops in G_N .
- Apply CFT bootstrap techniques to get information on amplitudes in curved space-times, which are hard to access with more conventional amplitude techniques.
- This method has been very successful at one loop —> full amplitude

Alday, AB Aprile, Drummond, Heslop, Paul Alday, Caron-Huot

• What can we say about all loops?

AdS/CFT correspondence

- 4 dimensional SU(N) $\mathcal{N}=4$ Super Yang Mills (SYM) at large N and large 't Hooft coupling $\lambda=g_{YM}^2N$

$$\lambda = \frac{L^4}{\ell_s^4} \qquad \qquad \frac{g_{YM}^2}{4\pi} = g_s$$

• type IIB supergravity on $AdS_5 \times S^5$, with coupling g_s

Observables

• correlation functions in the SCFT

• scattering amplitudes in $AdS_5 \times S^5$

Observables

• correlation functions in the SCFT

 \mathcal{O}_p \longrightarrow Half-BPS operators, of dimension p and transforming under the [0,p,0] of SU(4)

• scattering amplitudes in $AdS_5 \times S^5$

Kaluza Klein modes

Observables

• correlation functions in the SCFT

Half-BPS operators, of dimension p and transforming under the [0,p,0] of SU(4)

superconformal primary operator of the stress tensor supermultiplet, $\Delta=2$

- scattering amplitudes in $AdS_5 \times S^5$
 - Kaluza Klein modes

Graviton supermultiplet

Four point function

$$\langle \mathcal{O}_2(x_1)\mathcal{O}_2(x_2)\mathcal{O}_2(x_3)\mathcal{O}_2(x_4) \rangle = \frac{G(u,v)}{x_{12}^4 x_{34}^4} = \frac{\sum_R G^{(R)}(u,v)}{x_{12}^4 x_{34}^4}$$

Four point function

$$\left\langle \mathcal{O}_{2}(x_{1})\mathcal{O}_{2}(x_{2})\mathcal{O}_{2}(x_{3})\mathcal{O}_{2}(x_{4})\right\rangle = \frac{G(u,v)}{x_{12}^{4}x_{34}^{4}} = \frac{\sum_{R} G^{(R)}(u,v)}{x_{12}^{4}x_{34}^{4}}$$

 $[0,2,0] \times [0,2,0] = six representations$

Four point function

 $[0,2,0] \times [0,2,0] =$ six representations

• Superconformal Ward identities: 1) algebraic relations among the different six $G^{(R)}(u, v)$, 2) all the six functions can be written in terms of a single function F(u, v)

Block decomposition

 $F(u,v) = \sum a_{\Delta,\ell} u^{\frac{\Delta-\ell}{2}} g_{\Delta,\ell}(u,v)$ $\Delta.\ell$

Block decomposition

$$F(u,v) = \sum_{\Delta,\ell} a_{\Delta,\ell} u^{\frac{\Delta-\ell}{2}} g_{\Delta,\ell}(u,v)$$

operators belonging to short and semishort multiplets

 $a_{\Delta,\ell}\sim \langle \mathcal{O}_2 \mathcal{O}_2 \mathcal{O}_{\Delta,\ell}\rangle^2 \quad \text{and } \Delta \text{ protected}$

operators belonging to long multiplets

• Expand $\mathcal{H}(u, v)$, $\tilde{a}_{\Delta, \ell}$ and Δ for large N and large λ .

all orders

leading

Expansions

• Expand $\mathcal{H}(u, v)$, $\tilde{a}_{\Delta, \ell}$ and Δ for large N and large λ .

 $\begin{aligned} \mathscr{H}(u,v) &= \mathscr{H}^{(0)}(u,v) + \frac{1}{N^{2\kappa}} \mathscr{H}^{(\kappa)}(u,v) \\ \tilde{a}_{\Delta,\ell} &= \tilde{a}_{\Delta,\ell}^{(0)} + \frac{1}{N^{2\kappa}} \tilde{a}_{\Delta,\ell}^{(\kappa)} \\ \Delta &= 4 + 2n + \ell \ell + \frac{1}{N^{2\kappa}} \gamma_{\Delta,\ell}^{(\kappa)} \end{aligned}$

all orders

leading

Expansions

• Expand $\mathcal{H}(u, v)$, $\tilde{a}_{\Delta, \ell}$ and Δ for large N and large λ .

all orders

leading

$$\mathcal{H}(u,v) = \mathcal{H}^{(0)}(u,v) + \frac{1}{N^{2\kappa}}\mathcal{H}^{(\kappa)}(u,v)$$

$$\tilde{a}_{\Delta,\ell} = \tilde{a}_{\Delta,\ell}^{(0)} + \frac{1}{N^{2\kappa}} \tilde{a}_{\Delta,\ell}^{(\kappa)}$$

 $\Delta = 4 + 2n + \ell + \frac{1}{N^{2\kappa}} \gamma_{\Delta,\ell}^{(\kappa)} \rightarrow$

1

INTERMEDIATE OPERATORS:

double trace operators at leading order $\mathcal{O}(N^{-4})$ higher trace at higher orders

One loop example

LEADING ORDER CAVEAT & FEATURES

LEADING ORDER CAVEAT & FEATURES

• Mixing problem: different operators with same "bare" dimension

solved up to order N^{-2}

One loop example

LEADING ORDER CAVEAT & FEATURES

• Mixing problem: different operators with same "bare" dimension

solved up to order $N^{\!-\!2}$

• Once $a_{I,n,\ell}^{(0)}$ and $\gamma_{I,n,\ell}^{(1)}$ are known, it is possible to reconstruct the full one loop/ N^{-4} answer!

One loop example

LEADING ORDER CAVEAT & FEATURES

• Mixing problem: different operators with same "bare" dimension

solved up to order $N^{\!-\!2}$

• Once $a_{I,n,\ell}^{(0)}$ and $\gamma_{I,n,\ell}^{(1)}$ are known, it is possible to reconstruct the full one loop/ N^{-4} answer!

LEADING ORDER CAVEAT & FEATURES

• Mixing problem: different operators with same "bare" dimension

solved up to order N^{-2}

• Once $a_{I,n,\ell}^{(0)}$ and $\gamma_{I,n,\ell}^{(1)}$ are known, it is possible to reconstruct the full one loop/ N^{-4} answer!

degeneracy index I

• At any loop order $N^{-2\kappa}$ there is a term of the form:

$$\frac{\log^{\kappa} u}{2^{\kappa} \kappa!} \sum_{I,n,\ell} u^{n+2} \tilde{a}_{n,\ell,I}^{(0)} \left(\gamma_{n,\ell,I}^{(1)}\right)^{\kappa} \tilde{g}_{2n+\ell,\ell}(u,v)$$

• At any loop order $N^{-2\kappa}$ there is a term of the form:

$$\frac{\log^{\kappa} u}{2^{\kappa} \kappa!} \sum_{I,n,\ell} u^{n+2} \tilde{a}_{n,\ell,I}^{(0)} \left(\gamma_{n,\ell,I}^{(1)}\right)^{\kappa} \tilde{g}_{2n+\ell,\ell}(u,v)$$

completely computable!

• At any loop order $N^{-2\kappa}$ there is a term of the form:

$$\frac{\log^{\kappa} u}{2^{\kappa} \kappa!} \sum_{I,n,\ell} u^{n+2} \tilde{a}_{n,\ell,I}^{(0)} \left(\gamma_{n,\ell,I}^{(1)}\right)^{\kappa} \tilde{g}_{2n+\ell,\ell}(u,v)$$

completely computable!

CAVEATS

- Does not exhaust the double discontinuity (unless $\kappa = 2$)
- There are intermediate operators which are higher traces

• At any loop order $N^{-2\kappa}$ there is a term of the form:

$$\frac{\log^{\kappa} u}{2^{\kappa} \kappa!} \sum_{I,n,\ell} u^{n+2} \tilde{a}_{n,\ell,I}^{(0)} \left(\gamma_{n,\ell,I}^{(1)}\right)^{\kappa} \tilde{g}_{2n+\ell,\ell}(u,v)$$

completely computable!

CAVEATS

- Does not exhaust the double discontinuity (unless $\kappa = 2$)
- There are intermediate operators which are higher traces

To which term in the dual amplitude it corresponds to?

ldea

- Take a limit in the correlator which corresponds to the flat space limit (bulk point limit)
- The sums of the previous slide are much simpler!
- Compare the result with the 10d four graviton supergravity amplitude in flat space.

Flat space amplitude

 Reduce to 5 dimensions, by computing discontinuities, for ex. at two loops

 Reduce to 5 dimensions, by computing discontinuities, for ex. at two loops

Result

ITERATED s-CUTS

Results

- All loop structure in the CFT dual to iterated s-cuts in the amplitude
- We believe that this is valid also in curved space

Open problems

- Extend this result to include stringy corrections
- Resum the contribution coming from all the cuts
- Understand better the singularity structure
- Try to match it away from flat space