Neutrino astronomy

APC 4 review, Nov 2020, Zeuthen

Markus Ackermann (Group overview / RNO-G) Summer Blot (Neutrino properties) Timo Karg (IceCube Upgrade) Marek Kowalski (IceCube-Gen2 + Communications strategy)

The neutrino astronomy group

R&D / Sensors	LE Science
Karg	Summer Blot
IceCube Upgrade	IceCube Upgrade
(L2 sensor lead)	(L3 calibration lead)
IceCube R&D	IceCube Upgrade
mDOM electronics	Neutrino properties
mDOM production	Calibration
2 PhD	1 PD / 2 PhD

Multi-messenger	Radio detection Nelles
end of Auto DESV	W2 professorship (FAU Erlangen)
Real-time set Sochum sources Optical/Gamma follow-up	Radio Neutrino Observator Greenland (RNO-G)
3 PD /4 PhD / 3 MSc	1 PD / 3 PhD / 1MSc

IceCube group lead

Gen2 development Spectrum / Flavor composition

1 PD / 2 PhD / 1 MSc

AP Scientific Computing Van Santen

IceCube Tier-1 management AMPEL development AP Computing coordination

+ strong collaboration with ZTF group at HU (Nordin)

ry in

Scientific highlights

Neutrinos from AGN cores

- Search for a cumulative signal from many AGN cores. \bullet
- Selected in IR / radio.
- Model: neutrino flux \propto soft x-rays. \bullet
- Paper in progress.

Radio-selected AGN **13927 sources**

IR-selected AGN **52835 sources**

Selected important papers from the group (submitted since April)

- Tau neutrino candidate observation paper (arXiv:2011.03561, submitted to PRL)
- IceCube-Gen2 science white paper (<u>arXiv:2008.04323</u>, accepted by Journal of Physics G)
- RNO-G concept paper (arXiv:2010.12279, submitted to JINST) \bullet

PREPARED FOR SUBMISSION TO JINST

Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)

J. A. Aguilar¹ P. Allison² J. J. Beatty² H. Bernhoff³ D. Besson^{4,5} N. Bingefors⁶ O. Botner⁶ S. Buitink⁷ K. Carter⁸ B. A. Clark⁹ A. Connolly² P. Dasgupta¹ S. de Kockere¹⁰ K. D. de Vries¹⁰ C. Deaconu¹¹ M. A. DuVernois¹² N. Feigl¹³ D. García-Fernández^{13,14} C. Glaser⁶ A. Hallgren⁶ S. Hallmann¹⁴ J. C. Hanson¹⁵ B. Hendricks¹⁷ B. Hokanson-Fasig¹² C. Hornhuber⁴ K. Hughes¹¹ A. Karle¹² J. L. Kelley¹² S. R. Klein¹⁶ R. Krebs¹⁷ R. Lahmann¹³ M. Magnuson⁴ T. Meures¹² Z. S. Meyers^{13,14} A. Nelles^{14,13} A. Novikov⁴ E. Oberla¹¹ B. Oeyen¹⁸ H. Pandya⁷ I. Plaisier^{13,14} L. Pyras^{19,14} D. Ryckbosch¹⁸ O. Scholten¹⁰ D. Seckel²⁰ D. Smith¹¹ D. Southall¹¹ J. Torres² S. Toscano¹ D. J. Van Den Broeck^{10,7} N. van Eijndhoven¹⁰ A. G. Vieregg¹¹ C. Welling^{13,14} S. Wissel^{17,8} R. Young⁴ A. Zink¹³ ¹Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium ²Dept. of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH 43210, USA ³Uppsala University, Dept. of Engineering Sciences, Division of Electricity, Uppsala, SE-752 37, Sweden

⁴University of Kansas, Dept. of Physics and Astronomy, Lawrence, KS 66045, USA

DESY.

High-energy neutrino / TDE correlation paper (arXiv:2005.05340, under review by Nature Astronomy)

Status of RNO-G efforts

- RNO-G concept paper lead by Anna Nelles submitted in lacksquareOctober
- Hardware production for RNO-G stations nearly complete lacksquare
- Deployment of RNO-G suffers from COVID-19 delays \bullet
 - Summer 2020 season has been cancelled
 - Deployment of 10 stations planned for 2021 \bullet
 - Mechanical drill was purchased from British Antarctic \bullet Survey (from Belgian infrastructure grant)
- Main DESY deliverables: calibration (incl. database \bullet and software), deployment contributions

Low energy neutrino physics with IceCube

The goals

- Use IceCube DeepCore in-fill to produce World-leading measurements of atmospheric neutrino oscillations
 - 30 Mton fiducial volume, high energies and large propagation distances through complex matter profile -> unique access to non-standard oscillations physics
- Last few years have involved a massive undertaking to improve data quality
 -> now complete
 - Major DESY contributions to the revision of DeepCore event selection and development of analysis framework software
- DESY also plays a key role in generation of MC simulation and reconstruction for the future IceCube Upgrade detector

Low energy neutrino physics with IceCube

Science highlights

- DESY is leading the way in the first measurement of θ_{23} and $\Delta m_{32}{}^2$ with 8 years of data
 - So-called verification sample analysis stepping stone to higher statistics analysis
- Update to search for light (eV) scale sterile neutrinos also underway
- New search for heavy neutral lepton (HNL) production and decay inside DeepCore volume
 - Unique sensitivity to $U_{\tau 4}$ mixing for ~GeV scale sterile neutrinos
 - Signature of BSM physics, with implications for neutrino mass generation
 - Low energy double-bang signature produced by tau-neutrino "up-scattering" to HNL and subsequent decay

Low energy neutrino physics

Group structure and scope of activities

- IceCube Upgrade will enable unprecedented precision in atmospheric neutrino measurements
- Over the next years, will slowly shift focus from DeepCore-only analyses to combined DeepCore + Upgrade reconstruction and analysis
- Upgrade construction enables a healthy mix of analysis and hardware training for a wellrounded education of all group members

	Personnel	DeepCore: Standard oscillations	DeepCore: Sterile neutrino searches	lceCube Upgrade/Gen2
	Staff, S. Blot	25%	25%	50%
	PD 1, W. Ma	70%		30%
new	PD 2, S. Mechbal			100%
	PhD 1, A. Trettin	50%	50%	
	PhD 2, L. Fischer		70%	30%
2021	PhD 3, N. Fiegl			100%

3m to next OM

IceCube Upgrade

News Since APC 3

- S. Blot hired as staff scientist (50% Upgrade management / 50% Upgrade science)
- mDOM close to Final Design Review
 - Missing item are the PMTs
 - Production now ramping up slowly at Hamamatsu; delayed due to Covid-19
- Tendering process for pressure vessels finished
 - Pressure vessels for series production will come from Nautilus
- Large-scale procurement for optical gel in preparation
- Tender for Schönefeld integration site (HVAC) published
 - Bidding closes on Nov. 26th
 - Expect Schönefeld site to be operation on April 1, 2021
 - Temporary integration lab established on Zeuthen campus

Half-mDOM with working LED flashers

mDOM integration lab at MSU

mDOM PMT

Integration of D-Eggs in Japan

First batch of D-Eggs ready for testing

IceCube Upgrade Project

Impact of Covid-19

- Impact Project is behind schedule due to the pandemic, impact varies by subsystem
- Field season for 2020-2021 has been cancelled, we had planned much of drill repair this year to be ready for drill hot test next year
- USAP resupply vessel to McMurdo was cancelled, main drill hose will not ship to McM this year, may ship to Christchurch and remain
- No cargo flights from McM to SP, and overland traverse to SP oversubscribed, generators will remain in McM

IceCube Upgrade Project Advisory Panel Meeting Report Oct. 30, 2020

Panel: B. Flaugher (Chair), A. Lazzarini, D. Nygren, J. Jacobsen

Farshid Feyzi presented a talk on the overall project status and impact of COVID. Field season 2020-2021 for the Upgrade has been cancelled and shipments to McMurdo and the Pole have largely stopped. Technical progress has been good on all fronts but missing this season will extend the project. NSF has scheduled a review for Feb. 16-17, 2021. The main topic will be rebaselining.

We encourage the project to proceed with development of a plan (cost and schedule) to add a year to the project and rebaseline. We are concerned that the rebaselining effort is a significant undertaking -- IceCube needs to start this ASAP.

Revise the Year 3 plan to fit within the currently approved profile. Prioritize the work that can be completed this year with high confidence. Include a detailed justification for how you will credibly spend the full amount (given that you underspent the past two years). If you want to exceed the approved Year 3 amount then present a detailed description (scope cost and schedule) and justification for why this work should be done in year 3.

Review and evaluate the impact of the new year 3 plan on years 4, 5 and 6.

Review your schedule/cost variances and allocate them to 3 categories: (i) Normal project issues that you would have incurred even without COVID-19, (ii) Logistics issues outside of IceCube's control, and (iii) Directly COVID related. If possible, estimate future cost/schedule impacts in these categories in year 3, 4 and 5 (and 6).

- Technical progress continues to be excellent, collaborating institutions have been able to continue work
- A plan for project year 3 (Oct. 2020 Sep. 2021), as a stand-alone plan, has been developed to continue the work with following focus:
 - Continue production and testing of D-Eggs and start production of mDOMs
 - Procure main and surface cables, penetrators
 - Advance drill repairs and control system, northside work can advance more with staff not travelling
 - Move cargo southward to McMurdo Station and to South Pole (this now looks very improbable)

Personnel and Organization

Impact of Covid-19

- Minor (typical one to two months) delays in development all subsystems since many people worked partly from home
- Interruptions in electronics parts supply chains have slowed down prototyping of mDOM readout
- Largest impact is on PMT-base production by Hamamatsu
 - Design was approved for production in February 2020
 - Delivery times for some parts (connectors, SMD resistors) in mass production quantities as late as September 2020
 - First articles inspected in September / October 2020
 - Expect first shipment of PMT for design verification mDOMs in November 2020

Key Milestones and Schedule Performance

•	Dec 2018	mDOM Preliminary Design Review "mechanics"		(<u>report</u>)
•	Feb 2019	Interfaces btw. Ice Comms Module and DOMs defined		
٠	Jun 2019	mDOM Preliminary Design Review "electronics"	(Aug 2019)	(<u>report</u>)
•	Oct 2019	Start of mass production of Ice Comms Modules	(Dec 2019)	
•	Apr 2020	mDOM Final Design Review	expected Dec 20	20
•	Jul 2020	mDOM Production Readiness Review		
•	Jan 2021	Start of mDOM production	expected Mar 20	21
•	Sep 2021	All DOMs ready to ship to Pt. Hueneme	expected Jan 20	22
•	Dec 2022	Deep drilling and deployment at South Pole		

Gen2 Update

Gen2 white paper(s)

- The comprehensive Gen2 science white paper published on the archive and accepted for publ. in Journal of Physics G. (lead by M.Ackermann, remaining milestone in PoFIII plan now completed)
- It lays out the science case, derives requirements and presents sensitivity. It also serves as a documentation of our conceptual design.
- Other white paper efforts: Gen2 submission to Snowmass2021 (Karle, Kowalski et al.). US Decadal Survey has seen several iterations with the panel in the spring (100+ extra pages had been written), expect results in April 2021.

Gen2 development towards a PDR

- Informal suggestion by NSF to complete a Preliminary Design Review (PDR) by fall 2021. This is a requirement for being considered for funding.
- CMB-S4 plans similar scale project for South Pole, and PDR would close the planning gap between us and them.
- Gen2 optical sensor design is being developed by a team from DESY, UW Madison and Chiba. It follows the mDOM concept but will be more compact and cost optimized.
- Radio less mature and behind in planning: We established a Gen2 radio working group / task force under the leadership of Anna Nelles and Abby Vieregg.
- Relation to IceCube Upgrade / Gen2 Phase 1 is that we build on its R&D, but do not require deployment for verification.

Preproposal for Helmholtz investments (FIS)

- Preproposal for Gen2 to enter Helmholtz roadmap submitted Oct 31; request 20.77 MEuro for instrumentation
- Lead by DESY (Kowalski), KIT major partner.
- DESY leads work packages on sensors and radio, KIT on surface array
- Discussion started with AWI to join Gen2. Mutual benefits: For AWI: a very detailed measurements of the ice over the 500 km2 footprint of Gen2, while IceCube-Gen2 would gain extra access to logistic support

Table 1: Comparison of the actual costs of building IceCube, the total projected costs for the construction and deployment of the IceCube-Gen2 observatory, the investments requested in this proposal, and DESY/KIT contributions to labor and operations. Contributions are divided into investments for instrumentation and other support to allow proper comparison between US and European accounting.

Budget item	IceCube (actual, in M\$)	IceCube-Gen2 (total projected, in M\$)	This proposal (investments, in M€)	
Optical/surface array (Instrumentation)	111.9	151.9	17.65	(a)
Radio array (Instrumentation)		25.9	3.12	(b)
Total instrumentation	111.9	177.8	20.77	
Project support	27.9	28.1		(c)
Implementation	46.6	61.6	program	(d)
Data systems	27.1	13.1	contributions	(e)
Commissioning & Verification	20.8	12.2	from	(e)
Polar support	36.3	53.9	DESY + KIT	(f)
Pre-operations	7.1	0		(e)
Total	277.7	346.7	20.77	

(a) Significantly higher sensor coverage per string than IceCube

(b) Component was not available for IceCube

(c) Build on IceCube structure approach

(d) Drilling and deployment

(e) Savings due to existing IceCube infrastructure / M&O structure

(f) Increased efforts on the ice (more strings, radio array)

HELMHOLTZ RESEARCH INFRASTRUCTURES PROPOSAL FOR A LARGE INVESTMENT (> EUR 15 MILLION

The IceCube-Gen2 Neutrino Observatory
The Window to the Extreme Universe

The IceCube-Gen2 observatory will elevate neutrino astronomy from the discovery realm to the precision era, ncluding a survey of sources in the neutrino sky. The contributions planned by DESY and KIT build on their reading role in the project.

Timeline

YEAR (calendar year)	19	20	21	22	23	24	25	26	27	28	29	30	31	32
IceCube Upgrade (in ice)														
IceTop upgrade (surface)			30%	6										
Radio development		Radio dev	elopment	in Greenland										
			developm	nent at Pole										
IceCube-Gen2						FIS f	undin	g						
Project year						PY1	PY2	PY3	PY4	PY5	PY6	PY7	PY8	PY9
Conceptual design phase	since 2016	5												
Preliminary design phase														
Final design phase														
Construction														
						900	2100	2100	2100	2100	2100	600		
Sensor production						500	2100	2100	2100	2100	2100	000		
in-ice construction. Strings								8	20	21	21	21	21	8
On ice construction: Radio, Surface														
							Major fiel Hot water	d activity r drilling op	erations					

Other developments

- Started discussion within German community (within KAT) to receive additional project funding for participation of Universities (goal ~20MEuro).
- Preparation for launch of icecube-gen2.de website early December ongoing (editorial board: Haungs, Helbing, Kowalski, Resconi, Rhode, Wiebusch).
- Promotion event planned for spring/summer 2021, once Decadal Survey results are known.
- New advisory board to IceCube / Gen2 being set up; Barry Barish agreed to (continue) chairing it.

Backup

Planned Cost

Deliverable	Qty.	Est. Cost / pc. [EUR]	October 2020 Cost Est. [EUR]	Basis of Estimate	March 2019 Cost Est. [EUR]	
mDOM w/o PMTs	430	4 555	1 958 650	(cf. next slide)	1 961 660	No spares included here
mDOM Production Facility	1		435 113	HOAI planning		
mDOM FAT Facility	1		275 000	HOAI pre-planning	200 000	
mDOM DVT Modules	10	13 340	133 400	mDOM +30% for low qty.	126 420	
Ice Comms Module	900	100	90 000	in production	80 000	
Field Hub	7	10 000	70 000	engineering est.	70 000	
PMT Incoming Test Facility				engineering est.	35 000	Verbundforschung (Aachen, Dortmund
Subtotal			2 962 163		2 473 080	
R&D WOM				engineering est.	180 000	Verbundforschung (Mainz, Wuppertal)
R&D Radio Instrumentation			_	engineering est.	50 000	
Total APC 4 11 November 2020			2 962 163		2 703 080	Page 7

mDOM Cost and Basis of Estimate

	October 2020 Cost Est. [EUR]	Basis of Estimate	March 2019 Cost Est. [EUR]	
Mainboard	1 000.00	engineering est.	1 000.00	
PMT base incl. soldering to PMT		included in PMT	840.00	
PMT Support Structure	1022.72	vendor quote	810.86	
Optical Gel	462.00	vendor quote	624.42	
Pressure Vessel	780.00	purchased	587.00	
Penetrator	590.00	vendor quote	400.00	
Harness	_		100.00	
Miscellaneous	700.00	engineering est.	200.00	
Total	4 554.72		4 562.28	
PMT	5 592.00	purchased (includes PMT base)	5 162.16	purchase
Harness	115.00	engineering est.	_	will be pu Verbundf

(Wuppertal) Page 8

Production and Final Acceptance Testing Facilities

- These facilities account for the largest cost increase
- Original plan: refurbish production and testing facilities from IceCube Gen1 on the Zeuthen campus

Production facility

- Is now been used as optical calibration lab; it was decided to not move the lab
- New hall rented in Schönefeld together with CTA
- Significant effort required, especially on HVAC to fulfill work safety and cleanliness requirements

Acceptance Test Facility

- Chillers in worse condition than anticipated
- Noise emission to neighboring residential area requires relocation of chillers

Measures

- Some of the cost increase covered by university Verbundforschung funds
- Reevaluation of requirements for Final Acceptance Testing to reduce facility cost

The IceCube Upgrade Project

- IceCube Upgrade will significantly increase the sensitivity of the experiment from 2023
- Seven new, densely instrumented strings inside the DeepCore volume
- New sensors and calibration devices haven been developed, profiting from 10 years of IceCube experience
- Important step towards the next-generation observatory IceCube-Gen2
- Main physics goals
 - Neutrino mixing parameters (esp. v_T appearance)
 - Calibration of ice optical properties

The IceCube Upgrade Project – Deep Ice Sensors

mDOM (DESY, U Erlangen, U Münster) Diameter: 14 inch (24) 3-inch PMTs 2.2 A_{eff} of IceCube DOM adapted from KM3NeT

D-Egg (Chiba U) Diameter: 12 inch (2) 8-inch HQE PMTs 1.5 A_{eff} of IceCube DOM

for comparison:

IceCube DOM*

Diameter: 13 inch single 10-inch PMT (DeepCore: HQE)

*DOM: Digital Optical Module

- Final Design Review in Feb. 2020
- Pre-production of 50 D-Eggs completed
 - Sealing postponed due to missing ICM Golden Image firmware
- Preparations for Final Acceptance Testing well underway
 - (16) D-Eggs sealed and loaded into freezer in Oct. 2020
- D-Egg Batch #2 integration (Qty. 200) started on Oct 29, 2020
- About 4 months delay compared to PY2 schedule
 - D-Egg schedule always driven by Japanese funding
 - D-Eggs are well in time for installation in the Upgrade

IceCube Upgrade Project

Organization

IceCube Upgrade Project – Organization

String installation

DESY-lead activities

German University-lea

IceCube Upgrade Project

Funding and Schedule Overview

- NSF: 23 M\$
 - incl. 2.9 M\$ contingency
- Helmholtz
 - DESY: 2.85 MEUR invest
 - KIT: 2.33 MEUR invest
- Chiba University
 - 300 D-Egg sensors (approx. 3 M\$ invest)
- Michigan State University
 - approx. 3 M\$
- Multiple university in-kind contributions

Pre-COVID19 Schedule

Production

- Production at two sites: DESY and MSU
- Planned rate: 9 mDOMs / week / site

DESY Site

- Rented 844 m² hall in Schönefeld (~20 min. by car from campus)
- Shared by IceCube and CTA (pre-assembly of mid-scale telescopes)
- 105 m² area walled off for mDOM integration
- Start of construction: November 2019
- Requirement: 4 air changes per hour est. cost: 177 kEUR

Final Acceptance Testing

- Operate all mDOMs at -40°C for three weeks before shipping to Pole
- IceCube Gen1 Dark Freezer Lab (DFL) still existing in Zeuthen, but cooling aggregates reworked for CTA mirror testing
- Also noise emission problems towards neighbours
- \rightarrow Major refurbishment of DFL required
- Trade study performed by Ingenieurbüro Helm Option:
 - Refurbish existing DFL
 Best option
 est. cost: 239 kEUR
 - Construction of new DFL in Zeuthen experimental hall
 - Construction of new DFL in Schönefeld

IceCube Gen1 FAT @ DESY (capacity 64 DOMs)

DFL trade study

mDOM Project – Organization

Integrated mDOM

- Pressure vessel, PMT support structure, Optical Gel
- Harness

mDOM electronics

- Readout electronics
- High-voltage system
- LED Flasher production

mDOM PMTs

- PMT selection
- PMT Acceptance Testing

mDOM integration

mDOM Final Acceptance Testing

WWU Münster WWU Münster

(procurement and pre-assembly of PMT support structure)

BU Wuppertal (design, procurement, pre-assembly)

DESY

DESY

UW Madison

JGU Mainz

FAU Erlangen, WWU Münster RWTH Aachen, TU Dortmund, BU Wuppertal DESY DESY, FAU Erlangen, JGU Mainz