

Studies of the cool-down dynamics around T_c using a flux expulsion lens

Anton Ivanov <u>anton.ivanov@cern.ch</u> Torsten Koettig, Alick Macpherson

Thanks for the support from: Cryolab team — Cryogenics Group CERN Tommi Mikkola, Simon Barrière – *Mechanical and Materials Engineering Group CERN*

Why improve expulsion efficiency?

Main goal: mitigate residual resistance RB due to trapped flux

What impacts flux expulsion?

History of material preparation

Flux trapped in **defects**: Impurities, dislocations, grain boundaries

Consensus:

Recrystallization by heat treatment improves expulsion

What is a useful experiment to study flux expulsion? Relate material preparation to cool-down dynamics near T_c

Research context

History of cool-down

Observed from: Q₀ and magnetometry Correlated to: Cooling rate, SC front speed, VT ...

Consensus:

$$\blacklozenge \nabla T \qquad R_B \blacklozenge$$

Bare cavities Improves by "fast" cool-down **Intrinsic** to material

R_B $\mathbf{I} \nabla T$

Thermoelectric-prone setups Improves by "slow" cool-down Related to the setup

What have we done?

A standalone magnetometry instrument to measure expulsion efficiency prior to cavity production — proof of concept reported at TTC 2020

What is the goal of this study? Can we correlate trapped flux to the cool-down dynamics around T_c ?

Outline

- Magnetic Flux Lens Concept
- Measurement and control of the cool-down dynamics
- Results from measurement campaigns
- Summary and contributions

Sample: sheet Nb disc Magnetic field: Along axis and homogeneous

• Flux expulsion efficiency η with $0 < \eta < 1$ obtained from:

Flux density measured with a fluxgate:

Concept

 \hat{z}

Expelled flux measured with a search coil:

Coil
$$\eta = \Delta \Phi_{\rm coil} / \Phi_0 \qquad \Delta \Phi_{\rm coil} = -\int_{t_{NC}}^{t_{SC}} V_c dt$$
aperture
$$\Phi_0 = B_0 A_{Annulus}$$

Instrument design and setup

Flux density measurement

Bartington Mag-F

• Sample

Diameter = 9 cmAperture = 0.6 cm

 $B_{SC}^{sim}/B_0 \approx 2$

o Earth's magnetic field used

Small setup — homogeneous field

Spring loading for the cold contact

Conduction cooling in vacuum

Cryocooler

Cooling power \approx 1 W at 10 K

o Thermoelectric current mitigated by symmetry

Contact thermometry

Control of the SC transition

Power **1**

Power

Control of cool-down dynamics near T_c

Short heating pulse — **strong** expulsion

Control of the NC/SC transition via sample heater

Heating pulse length

Long heating pulse — weak expulsion

$$B_{SC}/B_0 \checkmark \implies \nabla T \checkmark$$

Measurement of cool-down dynamics near T_c

Short heating pulse — **strong** expulsion

Measurement of spatial temperature gradient:*

Long heating pulse — weak expulsion

T(t) signal

Cooling rate: 0.04 to 0.2 K/s SC front speed: 2 to 18 cm/s

*S. Huang, T. Kubo, and R. L. Geng, Phys. Rev. Accel. Beams 19, 082001 (2016)

• Measurement procedure:

Assemble Perform expulsion \longrightarrow Thermalize ~20 min \longrightarrow Repeat for a given pulse length and initial cool-down

• A total of 669 expulsion measurements over 7 measurement campaigns

Tested sample: benchmark cavity-grade RRR = 300 niobium (unworked sheet material)

***** C1 Poor thermal contact

10

- * **C1** Poor thermal contact
- C2 Indium gasket added ∇

- * **C1** Poor thermal contact
- C2 Indium gasket added ∇

C3

C4

- Indium gasket reused,
- C4 repeated without
- disassembly

(SC front speed)⁻¹

- * **C1** Poor thermal contact
- C2 Indium gasket added ∇

C3

C4

- Indium gasket reused,
- C4 repeated without
- disassembly

(SC front speed)⁻¹

- * **C1** Poor thermal contact
- C2 Indium gasket added ∇

C3

C4

- Indium gasket reused,
- C4 repeated without
- disassembly

- Force at cold contact tripled **C**5 \bigcirc -> affects thermal contact resistance
- Ο **C6** Design change: fixed gasket **C7** -> improved assembly

(SC front speed)⁻¹

Cool-down conditions are **repeatable** 0 within a given campaign and can be controlled by the heating pulse length

 Cool-down Conditions vary from campaign to campaign — thermal contact resistance varies

 Cooling at high rate not uniquely related to high ER

Observations

(SC front speed)⁻¹

• Cool-down conditions are **repeatable**

Observations

16

Summary and contributions

 Strategy to control and resolve the cool-down dynamics near T_c in the flux Lens developed

Amount of trapped flux linked to the cool-down dynamics near Tc

Campaign	N expulsions	$\max\{\nabla T\} [K/m]$	$\max\{\frac{B_{sc}}{B_0}\}$	Slope ^a
C1	3	0.4	1.01	_
C2	300	5.3	2.24	0.27
C3	75	4.8	2.07	0.23
C 4	144	4.8	2.06	0.26
C5	57	2.9	1.5	0.22
C 6	55	3.5	1.75	0.26
C7	35	3.5	1.69	0.27

Independent confirmation of studies performed on bare cavities:

• Cooling at high rate is not uniquely related to high expulsion

TESLA Technology, Collaboration Meeting 19-21 January 2021

Anton Ivanov <u>anton.ivanov@cern.ch</u> Torsten Koettig, Alick Macpherson

5

2

0

 Expulsion improves for cooling at high temperature gradients

dT/dr [K/m]

