European XFEL Operational Experience

Tesla Technology Collaboration Meeting 19-21 Jan. 2021

Julien Branlard, for the XFEL operation team

Hamburg, 21.01.2021

OUTLINE

The European XFEL

- Introduction
- RF station

2020

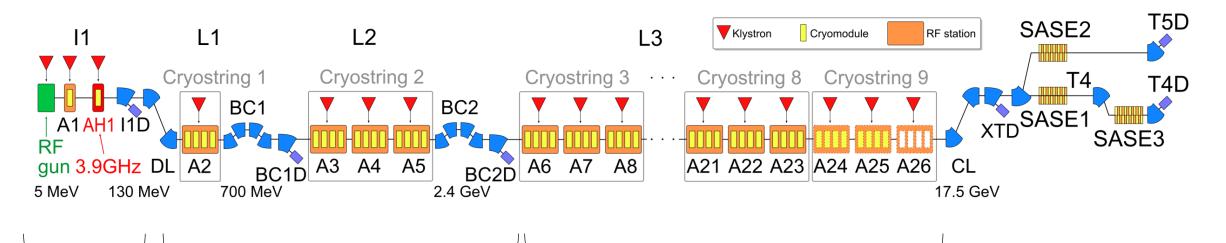
Machine stats
COVID-19 de(re)tune
High-/low-V linac setup

Availability

XTL report

Operation team

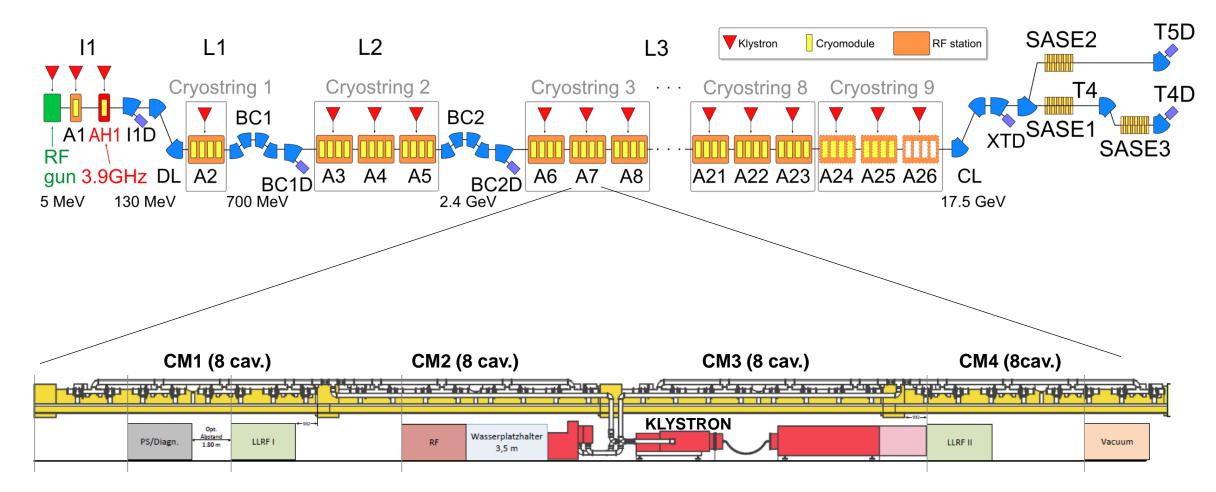
Automation


- Dynamic heat-load compensation
- LFD piezo automation
- FSM trip recovery
- The high-V / low-V experiment
 Statistics
 Trip examples

Outlook

Example: "big data" analysis

The European XFEL Accelerator

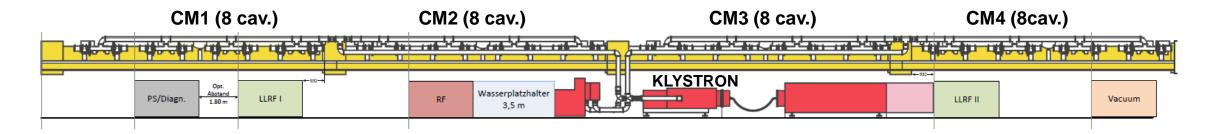


<u>Injector</u>	Bunch compression	Main Linac
120 m	Two stage	1180 m
130 MeV	354 m	17.6 GeV (max)
8× 1.3 GHz	2.4 GeV	20x 1.3-GHz RF stations
8× 3.9 GHz	L1 1× 1.3-GHz RF station	
	L2 3x 1.3-GHz RF stations	

<u>3 photon beam lines</u> 6 experiments demonstr. photon energies SASE1: 6-30 keV SASE2: 6-19 keV SASE3: 0.5-3.2 keV

The European XFEL Accelerator (RF station)

The European XFEL Accelerator (RF station)


One RF station comprises*:

- 32× TESLA-type 1,3-GHz cavities housed in 4 cryomodules
- 32× motorized power couplers
- 32× motorized **tuners**
- 64× piezo (actuator actuator / sensor)
- 36× motorized phase shifters (1/ cav + 1/ cryomodule)
- 100+ LLRF channels (probe, forward, reflected)

25 RF Stations

- 25 Klystrons
- 97 Cryomodules
- 776 1.3 GHz cavities

* Exception: A1 (injector) 1 CM

2020, year of the COVID-19

User stats

- 5640 operating hours6888 hours planned
- 1856 user hours (as planned)with 95% availability
- 30 keV (world record) and17.8 keV (routine) photon energy

COVID (de)retune

Unclear if personnel on site could guarantee cold linac in case of cryo failure

- Preventive measure: detuning all 776 SRF cavities
- 2 shifts, 8 people

April 2020: lockdown ("light" shutdown)

May 2020

Remote facility operation possibleRetune all cavities (2 shifts, 8 people)

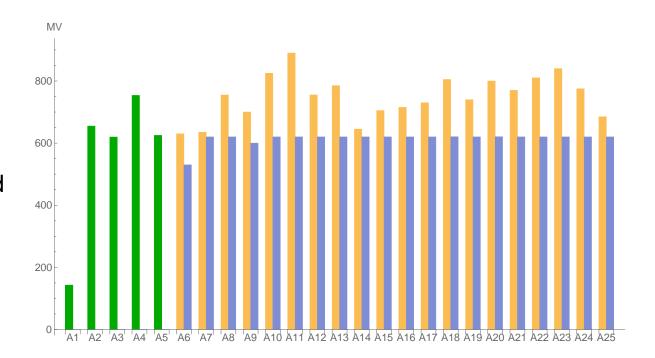
Lessons learnt

- Too long, too resource intensive
- 1-button automatic detuning (design phase!)
- Emergency plan ?

8

Linac Setup

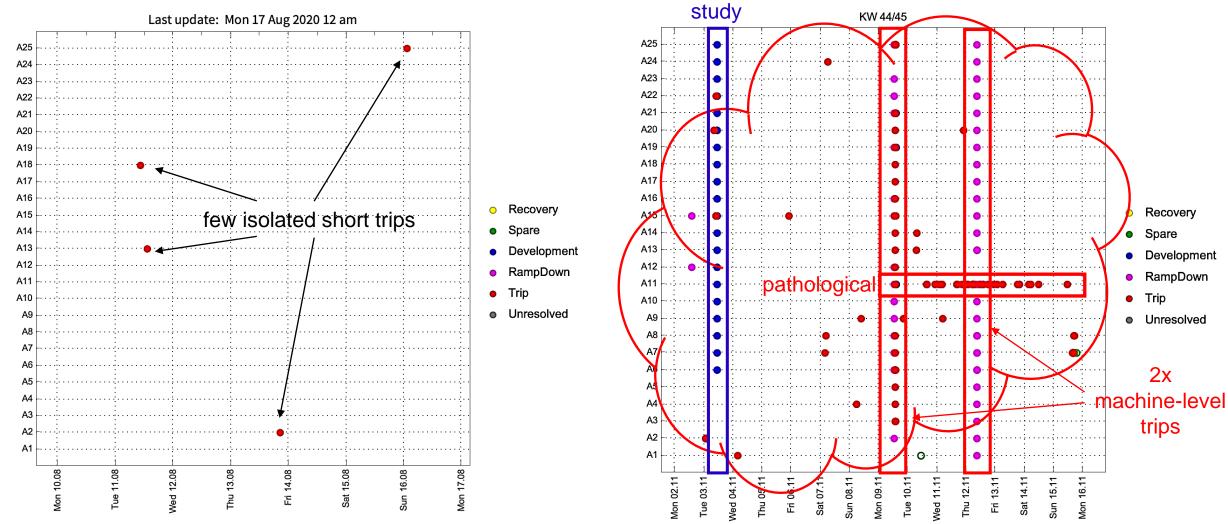
Two modes of operation:


- Iow-V : for beam energies 11.0 14.0 GeV
- high-V : for beam energies 14.5 16.5 GeV

High-V

- Cavities operating at max gradient
 - → more radiation coming from RF
- Cavities operating with almost no RF overhead
 - ➔ almost at quench limit
- Couplers, klystrons running with more power
 - ➔ more arcs, sparks, etc..
 - Overall, operating on the edge
 - ➔ more trips

- Iow-voltage
- up to bunch compressor (typical)


machine

BAD week

Monitoring the RF availability

XTL live report

GOOD week

XFEL Operational Experience

The Linac Operations team

Cross-disciplinary team

- 5 6 regular members
 - ► Operations
 - ► Low and high power RF
 - Couplers and cavity
- Special topics:
- ► Controls, cryo, MPS

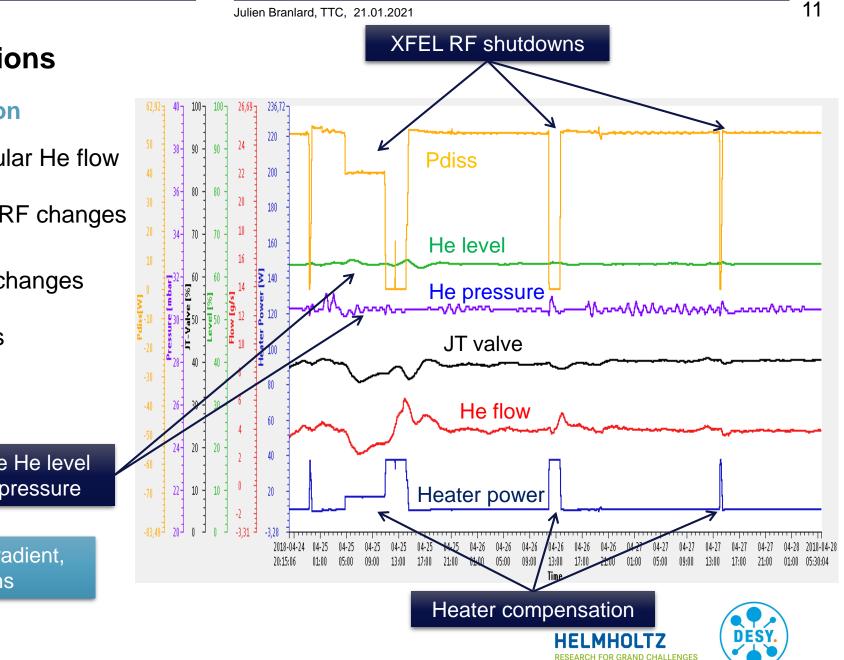
Weekly meetings

- Review / tag the trip of the week
 - Availability
- A.O.B.
 - ► Workflow, procedures
 - Accelerator development
 - ► Maintenance
 - ► Etc...

Stations	Туре	Time	Duration	OnBeam	LinacDownTime	RootCause
A2-A21,A23-A25	LinacOff	Wed 18 Nov 2020 17:08:05	1.4 hours	On	1.4 hours	INFRASTRUCTURE : NETWORK_HARDWARE : NETWORK SWITCH
A22	Trip	Wed 18 Nov 2020 17:01:57	4.9 hours	On	43 seconds	LLRF : QUENCH_DETECT : {M3.C7}
A22	Trip	Wed 18 Nov 2020 16:25:38	4.9 hours	On	60 seconds	LLRF : QUENCH_DETECT : {M3.C7}
A22	Trip	Wed 18 Nov 2020 14:05:41	4.9 hours	On	22.1 minutes	LLRF : HARDWARE_FAULT : DCM / RADIATION
A11	RampDown	Wed 18 Nov 2020 13:36:20	15.5 minutes	On	62 seconds	KLYSTRON : MAINTENANCE
A18	Trip	Wed 18 Nov 2020 10:27:42	1.5 hours	On	1.5 hours	TIMING : COMMS_ERROR : REBOOT / RADIATION
A11	Trip	Tue 17 Nov 2020 16:20:09	2.3 minutes	On	2.3 minutes	KLYSTRON : GUN_ARC
A11	Trip	Tue 17 Nov 2020 14:57:27	2.2 minutes	On	2.2 minutes	KLYSTRON : GUN_ARC
A8	Trip	Tue 17 Nov 2020 13:05:10	1.8 minutes	On	1.8 minutes	LLRF : QUENCH_DETECT : {M2.C7}

Julien Branlard, TTC, 21.01.2021

RESEARCH FOR GRAND CHALLENGES


Automation for RF operations

Dynamic heat load compensation

- Cold compressors need a regular He flow
- Avoid disturbance induced by RF changes Quenches
 - Sudden massive gradient changes
- Dynamic heat load fluctuations compensated by heaters

Stable He level and pressure

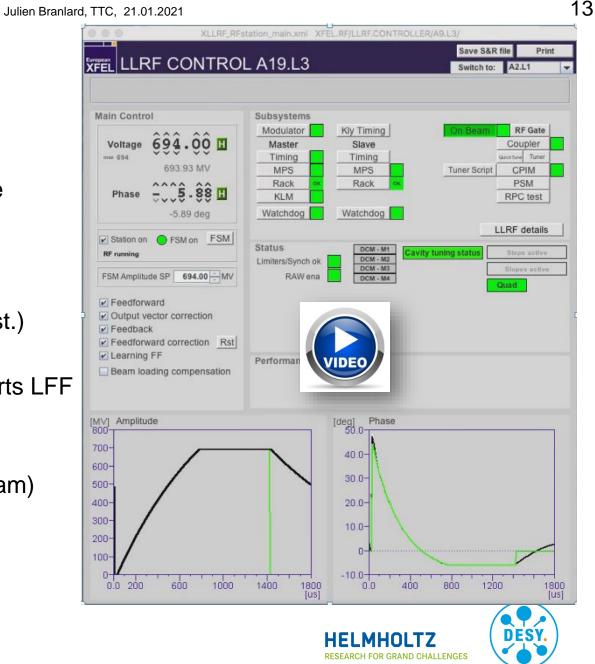
Pdiss computation based on RF gradient, flat top duration, and quench alarms

Automation for RF operation

Lorentz force detuning compensation

- Following a gradient change LFD compensation adaptation
 - 32 cavities simultaneously tuned
 - (16 cavities shown)

Z16M : I	M1.A23.	L3								PZ16M :	M2.A23	.L3							
Cavity Nezo Load Piezo Ena	1 On +	2 On On	3 On On	4 On v	5 On On	6 On ▼ 0	7 0n 0	On on	all off off	Cavity Piezo Load Piezo Ena	1 On v	2 On On	3 On ▼	4 0n 7	5 On T	6 On On	7 On v	8 On On	
AC Enable uto Tuning	On	Ön	On	On	On	On	On		off	DAC Enable Auto Tuning	On	On	On	On	On	On	On	On	on off
Static Det.	-10.	0.6	-15.	-7.5	-46.	-5.7	10	100		Static Dat	- 1	-8.5	0.4	-3.9	-2.8	6.6	-3.5	-2.3	
DC Volt	4.0	5.5	7.0	7.0	7.5	4.0						0.0	-1.0	4.5	3.0	0.0	4.0	4.0	to zero
DC status	tuned	tuning	tuning	tuning	tuning	tuned					d	tuned	tuned	tuned	tuned	tuning	tuned	tuned	
inear Det.	-266	-259	-297	-241	-296	-225						-130	-99	-213	-169	-179	-242	-255	
AC Volt	-7.5	-7.0	-7.0	-7.5	-7.5	-7.5						-6.5	-6,5	-7.0	-6.5	-6.5	-7.0	-7.0	to zero
AC status	tuning	tuning	tuning	tuning	tuning	tuning					19	tuning	tuning	tuning	tuning	tuning	tuning	tuning	
	Details	Details	Details	Details	Details	Details			D	EO /		Details	Details	Details	Details	Details	Details	Details	
800.0 700.0 600.0 500.0 400.0 300.0		DET_PULSE DET_PULSE DET_PULSE DET_PULSE DET_PULSE DET_PULSE DET_PULSE	But=13 But=2 But=2 But=11 But=11 But=11 But=11 But=	0 10		00 14	0 195			300	3 L2 3 L2 3 L2 5 L2 A23 L2	05 WOET_PULSE WOET_PULSE WOET_PULSE WOET_PULSE WOET_PULSE WOET_PULSE WOET_PULSE WOET_PULSE WOET_PULSE	But=8			-	100	1600	1800



HELMHOLTZ

Automation for RF operations

Finite State Machine

- Ramp up example (trip recovery):
 - Starts the modulator and wait for HV to be stable
 - Notify cryo that a station will be ramped up
 - Ramps up RF open loop at given pace
 - Recovers previous operating gradient
 - Scales output drive to match set point (fine adjust.)
 - Closes the loop (FB)
 - Clears learning feed forward corrections and starts LFF
 - Start piezo tuning
 - (Enables beam loading compensation)
 - Places station on beam (if was previously on-beam)

XFEL Operational Experience

Julien Branlard, TTC, 21.01.2021

High-Voltage (high-V) Experiment

31.08 – 18.10.2020 → 7 weeks at low-V

19.10 – 22.11.2020 → 5 weeks at high-V *

* Although the high-V linac configuration was only really needed for 1 user week

0

1000

Monitor Neutrons 3 Jul. 20 (14 GeV) and 8 Jul. 20 (17.5 GeV) 700 SEU A2 A3 A5 A18 A19 A20 A21 A12 A13 A14 A15 A16 A17 A22 A23 A24 A25 A4 A6 Α9 A10 A11 Α7 A8 600 [μ/۸S^η] LLRF system failures Cavity quenches 17.5 GeV suo 300 14 GeV **Gradient limiters** J 200 Radiation 100

500

Position [m]

1500

_____14

Julien Branlard, TTC, 21.01.2021

High-Voltage (high-V) Experiment

■ 31.08 – 18.10.2020 → 7.10

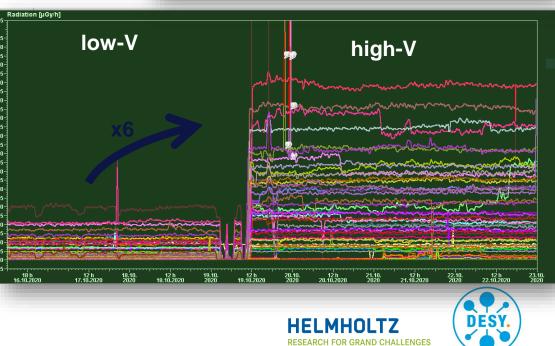
■ 19.10 - 22.11.2020 > 5

* Although was only re

Monitor

- SEU
- LLRF system failures
 Cavity quenches
 Gradient limiters
 Radiation

High-Voltage (high-V) Experiment


31.08 – 18.10.2020 → 7 weeks at low-V

19.10 – 22.11.2020 → 5 weeks at high-V

* Although the high-V linac configuration was only really needed for 1 user week

USB RadCons (inside racks)

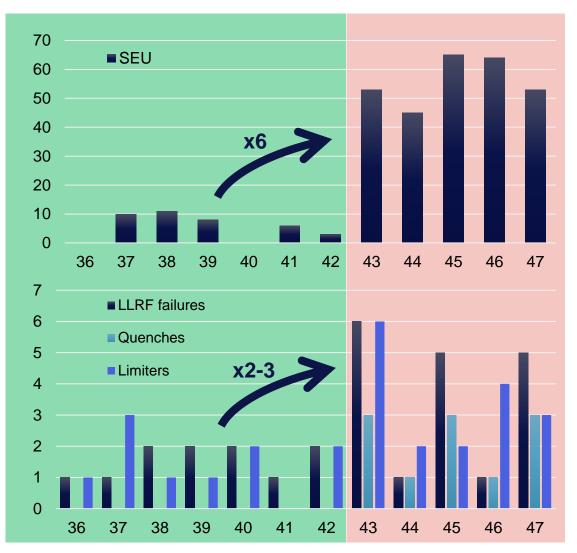
Monitor

- SEU
- LLRF system failures
- Cavity quenches
- Gradient limiters
- Radiation

XFEL Operational Experience

High-Voltage (high-V) Experiment

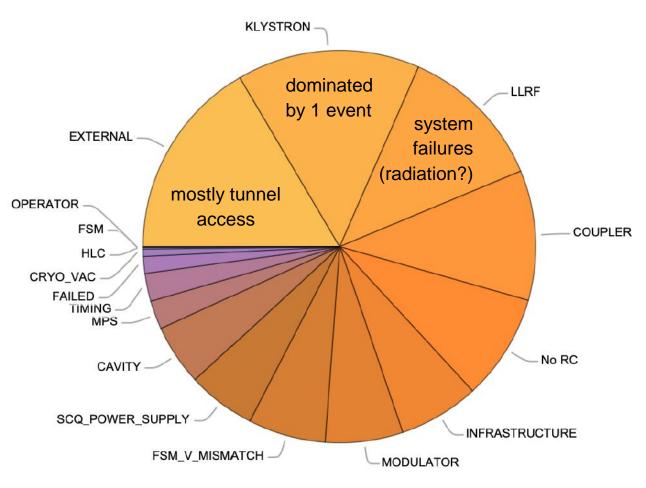
31.08 – 18.10.2020 → 7 weeks at low-V


19.10 – 22.11.2020 → 5 weeks at high-V

* Although the high-V linac configuration was only really needed for 1 user week

Monitor

- SEU
- LLRF system failures
- Cavity quenches
- Gradient limiters
- Radiation



High-Voltage (high-V) Experiment

		Total	Low-V	High-V
Availability	%	97.9	98.7	95.6
Total operation time	days	125.2	90.4	34.8
Number of events	hrs	300	124	176
Total down time	hrs	64.7	27.9	36.9

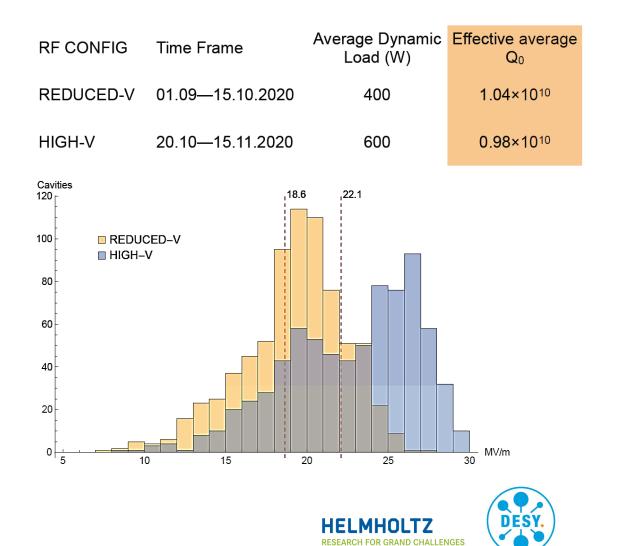
		Total	Low-V	High-V
Trips	hrs	40.1	13.5	26.6
Linac off (access)	hrs	18.3	10.7	7.6
Ramp down	hrs	3.5	1.8	1.7
Development	hrs	1.9	0.8	0.8

HELMHOLTZ

18

High-Voltage (high-V) Experiment

Heat load


Effective (average) cavity Q₀ from measured dynamic load

$$Q_{0,eff} \approx \frac{f_{rep}\left(t_{fill} + t_{flat}\right)}{(r/Q)P_{cryo}} \sum_{i=1}^{N_{cav}} \left\langle V_i^2 \right\rangle$$

where

$$\left\langle V_{i}^{2} \right\rangle = \frac{1}{T_{2} - T_{1}} \int_{T_{1}}^{T_{2}} V_{i}^{2}(t) dt$$

See talk from Rajinikumar Ramalingam: "XFEL heat load measurements" Tue. 19.01 WG1 session 2

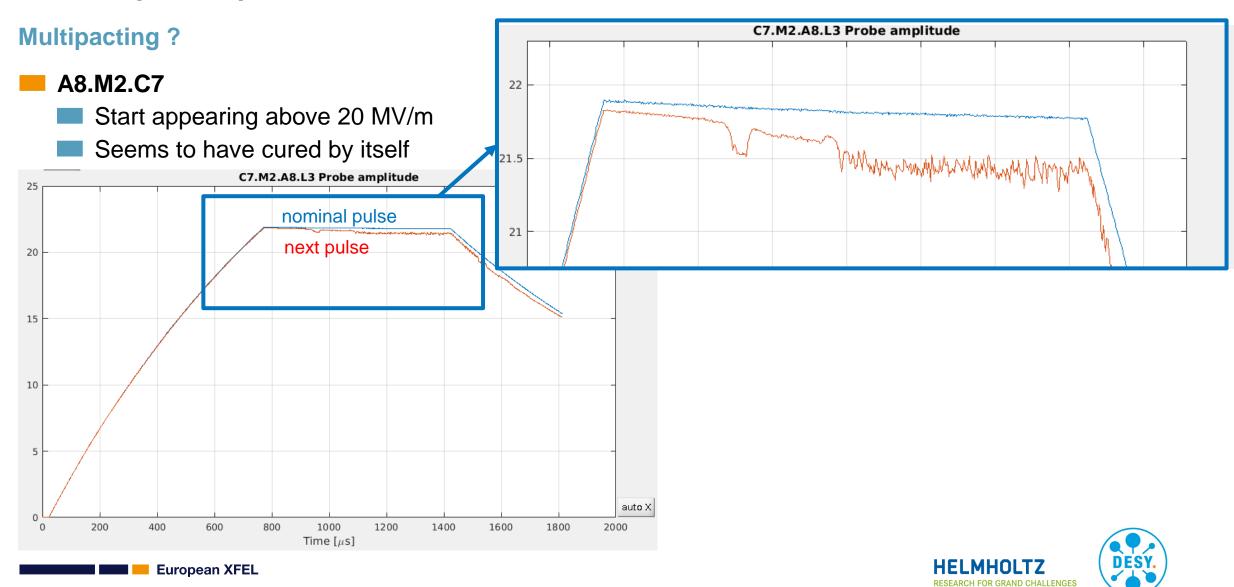


Field emitters

Example: A18.M3.C4

Procedure

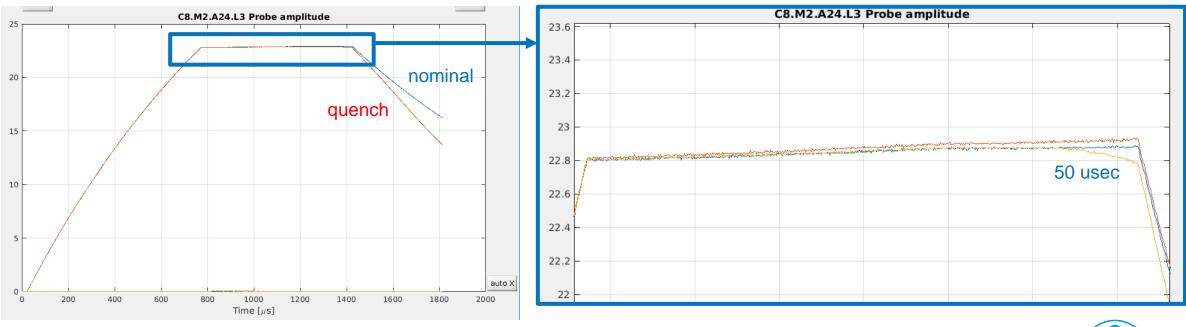
- Park MARWIN at peak neutron radiation
 - Detune / retune cavities one at a time until field emitter is found
 - Detune found field emitter (immediate solution)


European XFEL

See talk from Nick Walker "Experience with field emitters at EuXFEL", Wed. 20.01 WG1, session 4

21

Some trip examples

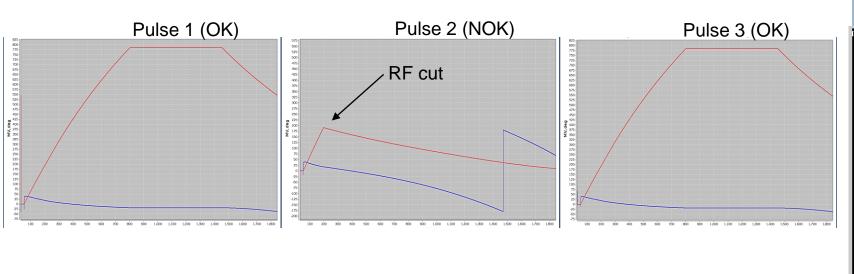


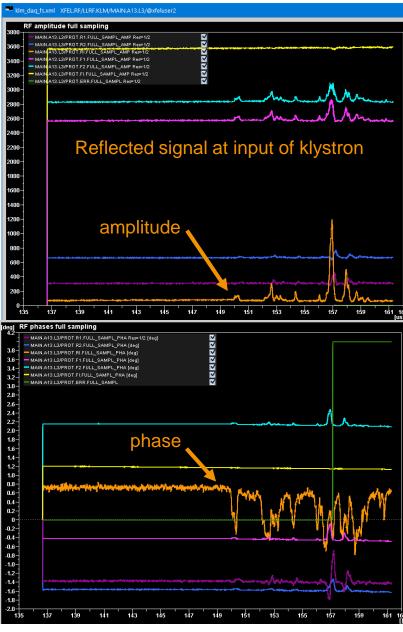
Some trip examples

Spontaneous quench

A8.M2.C8

- Isolated quench event
- Quench occurred at 22.8 MV/m
 - Cavity power limited during cryomodule tests (i.e. > 31.5 MV/m)

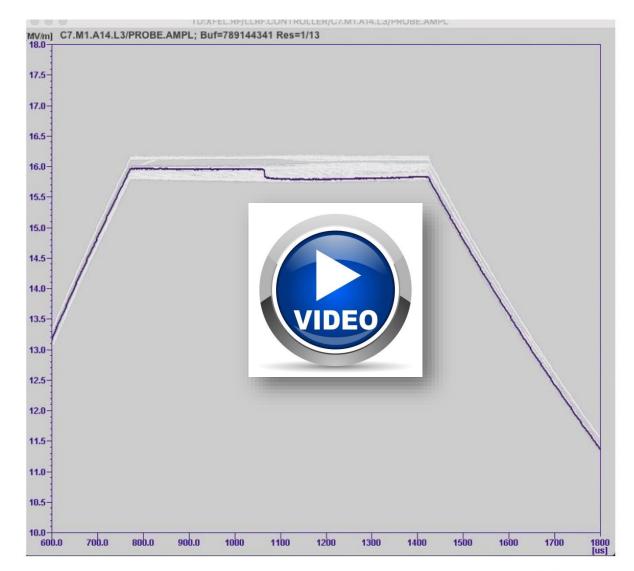



Some trip examples

Klystron instability

A13

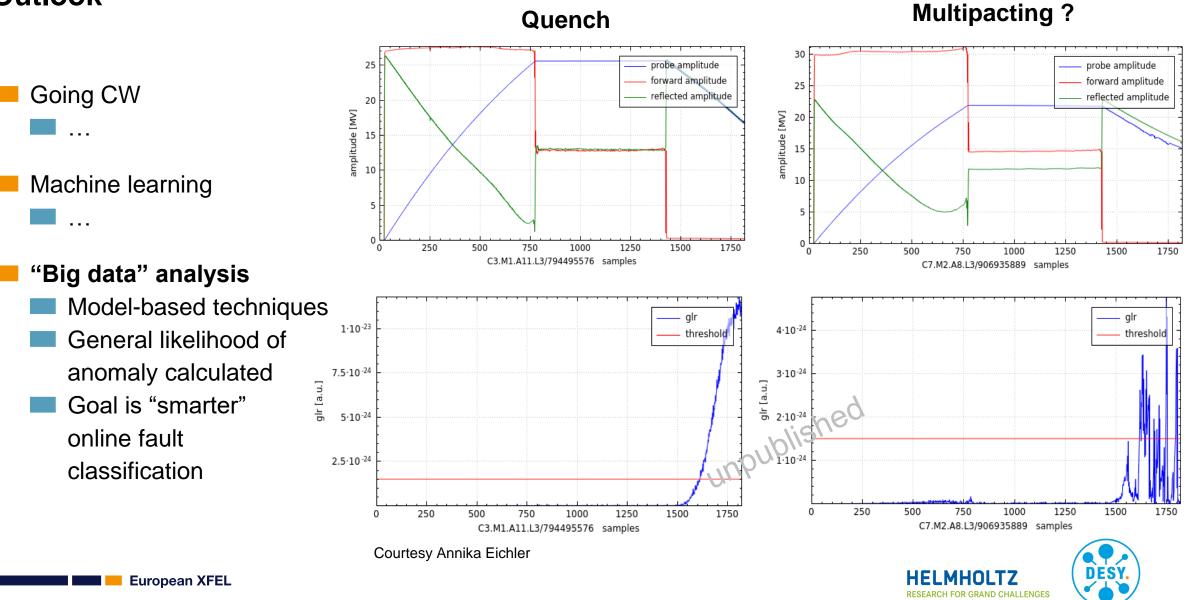
- KLM (high power signals monitoring)
- Detected reflected activity at input of klystron
- Stops RF drive within usec
- Prevents rise of vacuum level in tube
- Next pulse is OK



Some trip example

Piezo induced disturbance

A14.M1.C7


- Faulty LFD compensation
- Likely corrupted firmware (SEU)
- Recovered with an FPGA power cycle

XFEL Operational Experience

Outlook

Thank you for your attention!

Special thanks to Nick Walker

Contact

DESY. Deutsches Elektronen-Synchrotron Julien Branlard MSK

www.desy.de

julien.branlard@desy.de +49 (0) 40 8998 1599