Finite Impulses Response Filters for Compton Edge reconstruction & Background G4 studies

Ruth Jacobs

LUXE analysis TF meeting 26th October 2020

Reminder: Why we are interested in the kink

- Gaussian pulse: overlay of different true ξ leads to dramatic washing-out of edges
- final analysis should be a template fit (template of different ξ bins) fit to the spectrum

For the CDR propose simple approach:

- instead of differentiation, try to find the "kink" of the edge
- for low enough ξ (high w0) , this position corresponds to ξ_{max}

DESY.

Today!

Finite Impulses Response Filter (FIR)

Before: Simple Differentiation for Edge finding

- get electron x distribution
- calculate slope bin-by-bin
 - \rightarrow bin with max. slope = edge
- susceptible to statistical fluctuations!

method used by J. List et. al.

Finite Impulses Response Filter

- edge-like features in function g(x) can be identified by maxima in the convolution R(x)=h(x)*g(x) where h(x) is a matched filter
- R(x) is called the Response
- we have discrete data points $\mathbf{x}=(x_0,...,x_i)$, need discretized Response $R_d(i)$

$$R_d(i) = \sum_{k=-N}^N h_d(k) \cdot g_d(i-k)$$

- different filters h_d available, optimal choice depends on the function g(x)
- · Used here: First derivative of a Gaussian (FDOG)

$$h_d(k) = -k \exp(-\frac{k^2}{2\sigma^2})$$
 for $-N \le k \le N$

FIR approximates first derivative

DESY. — thanks to filters more robust against statistical fluctuations!

Finite Impulses Response Filter (FIR)

Features of interests:

- location L: edge position, maximum of Response
- kinks Kup/down: edge start/end points, determined by finding 95% interval of Response function
- alternative Kup/down: zero-crossing of Response
- width $W = K_{up} K_{down}$
- Note: Response is not necessarily Gaussian!
 → K_{up} and K_{down} can be very asymmetric

Spectra & Response

Spectra & Response

6

Spectra & Response

Edge Position (L) Reco vs. Generated

Closure test: difference between generated and reco here is only due to binning

Kink Position (Kup)

• the curve shows:

$$f(E)/\text{GeV} = 16.5(1 - \frac{2\eta}{2\eta + 1 + \xi^2})$$
 where $\eta = 0.192$

- uncertainty of points not final, slight bias at low $\boldsymbol{\xi}$

A first look at Cerenkov IP backgrounds

• Sasha ran a special e+LASER G4 sim with 2T magnetic field at $\xi_{max}=0.78$ (thanks!)

How to extract the "backgrounds":

- 1.) Select G4 events: detid==6300 (hit Cerenkov sensitive volume)
 - pdg==11 (electrons)
 - E>20MeV (Cerenkov threshold)
- 2.) Get x-distribution, convert back to energy using dipole parametrization
- 3.) Overlay with generated (signal-only!) energy spectrum from Tony's MC
 - → difference is background

Some Facts about Particles at the IP Cerenkov

x:z {detid==6300 && abs(pdg)==11 && E>0.02}

-130

-120

-110

-100

-90

-80

-70

DESY.

×

Х

-60

Sanity Cross-Checks

- "reco primaries": reconstructed from x-dist.
 of particles with trackid==1
- primaries: particles with detid==-1
- difference: difference between simmple B-field parametrization & actual field?

- generated: particles from Tonys MC
- primaries: particles with detid==-1

At the IP Cerenkov

difference between generated