TTbar and W+jet Background Estimate for the RA2

<u>Jula Draeger</u>, Jan Thomsen, Christian Auterman, Peter Schleper

University of Hamburg

GEFÖRDERT VOM

Outline

- Reminder: Description of data-driven TTbar and W+jets background estimation method
- Recent developments:
 - Integration into Christians tool (combining background estimates) & migration to CMSSW_3_X_Y
 - Investigations of uncertainties
 - Closure tests for TTbar&W+jets: electron/muon channel
- Summary & Outlook

RA2 standard selection

For the inclusive Njet SUSY search following cuts are applied:

 P_T (Jet1) > 180 GeV, P_T (Jet2) > 150 GeV, P_T (Jet3) > 50 GeV missing E_T > 150 GeV min Delta Φ (Jet1/2/3, missing E_T) > 0.3 Direct Lepton Veto (= no isolated lepton allowed)

Direct Lepton Veto (DLV) mainly rejects leptonic TTbar and W+jet events

Background Properties

- TTbar and W+jet events have real missing E_T in leptonic channel
- This lepton is not identified
- It is difficult to separate TTbar and W +jet events completely
- Combine TTbar and W+jet

Hadronic tau background is cared for by Maria

Fraction of TTbar background

Background Properties

Problem:

<u>Different topology in TTbar and W+jet events:</u>

- Boosted top emits W (and therefore lepton) and b close to each other
- → Closest jet is in most cases the associated b-jet
- Isolation efficiency lower for TTbar events
- → Efficiency in bins of ΔR
- In very hard pp-collisions more W⁺ produced W polarization (Markus Stoye)
- → More low P_T leptons in high missing E_T events (out of acceptance)
- → Increases syst. uncertainty

Idea of DLV-Cut Inversion

Direct Lepton Veto: no lepton within event: $P_T > 15$, rel isolation < 0.1 (muon) / 0.5 (electron), passed quality cuts (isGlobalPromtTight, $d_0 < 0.2$ cm) Invert Veto: requiring exactly one isolated lepton in control sample

	Out of acceptance	In acceptance
Isolated	Background C	Control Sample
Not Isolated	Background B	Background A (most important)

A = Control * (1 - Iso Eff)/Iso Eff B = A * acceptance Ratio C = Control * acceptance Ratio Total Background: A + B + C (corrected with RECO Eff)

- Reconstruction efficiencies as a function of $P_{\it T}$ are found from tag and probe method $Z \to \mu \; \mu$
- Isolation efficiencies as a function of ΔR and relative P_T from tool similar to tag and probe method usable on TTbar & W+Jet. **Thanks to Giovanni Petrucciani** migration to 'official' tag and probe $Z \rightarrow \ell\ell$ in progress
- P_T distribution and ratio of TTbar to W+jet from simulation as these information are quite reliable

Integration of the semileptonic TTbar background estimate into RA2 framework

Closure Test TTbar standalone

- Work in progress. Result preliminary!
- Shape and predicted number of events agree within uncertainties
- Region with low statistics in small ΔR bins get high weight factor as $(1-\epsilon_{iso})$ is large
- Main uncertainties from limited statistics in control region
- Systematic uncertainties dominated by uncertainty of the isolation efficiency
 - Here: statistical uncertainties from tag and probe method

W+jets

Closure Test W+jets and combined

HT

MET

Ttbar & W+jets

Summary & Outlook

- Successful migration to CMSSW_3_X_Y release
- Integration into the RA2 framework (Ch. Autermann)
- Good results for combined closure test (W+jet & TTbar) for electrons and muons
- Statistical uncertainties dominate until ~1fb⁻¹
- Migration to 'new' official Tag&Probe tool started recently, providing feedback to MuonPOG
- Signal contamination:
 - First glance on signal contamination:
 - For both LM1 and LM4 about 2/3 of TTbar statistics in control sample but mainly large values in ΔR --> only small weight factors (more quantitative studies ongoing)
 - Double check that contaminations from QCD are negligible by using b-enriched QCD sample
- Reproduce all plots with new efficiencies and include them to RA2-note

Backup: Samples & Software versions used

Ttbar:

/TTbarJets-madgraph/Summer09-MC_31X_V3-v2/GEN-SIM-RECO

W+jets:

/Wjets-madgraph/Summer09-MC_31X_V3-v1/GEN-SIM-RECO

Skimmed and 'patified' using CMSSW_3_1_4 and SUSY recipe

T&P sample Z+jets 'available' in CMSSW_3_4_1:

/Zjets-madgraph/Summer09-MC_31X_V3-v1/GEN-SIM-RECO