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The need for sophisticated hadron shower clustering..
> International Large Detector (ILD)

required to distinguish hadronic decays
of W and Z bosons;

> Pandora Particle Flow is current
state-of-the-art for W -Z jet energy
resolution (σE/E = 3.8%);

> Pandora PFA [3] relies upon sophisticated
clustering for particle showers in highly
granular calorimeters.

> Machine Learning is a rapidly developing
science, with many state-of-the-art
applications in clustering.

> Can machine learning be used to aid in
PFA clustering?

> Does a temporal calorimeter aid in
clustering?

Reconstructed invariant mass distributions for
the hadronic system in simulated
ZZ → dd̄νν̄ and W+W− → ud̄µ−ν̄ [3]

1

1M.A. Thomson. “Particle �ow calorimetry and the PandoraPFA algorithm”. In: (2009).
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Goals.

Predict the fraction of energy belonging to two hadronic
showers observed in AHCAL, cell by cell, using existing
state-of-the art machine learning methods.

> State of the art machine learning uses graph networks to achieve
separation.

> Several options for shower separation discussed in paper:
> Standard Convolutional Neutral Network;
> Dynamic Graph Convolutional Neutral Network (DGCNN)1

> GravNet2 ;
> Is time a useful variable for hadronic shower clustering?
> What is the e�ect of time resolution on network performance?

1Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds. 2018. arXiv:
1801.07829.

2Shah Rukh et al Qasim. “Learning representations of irregular particle-detector
geometry with distance-weighted graph networks”. In: (2019). ISSN: 1434-6052.
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Simulation Information: Calorimeter Design.

Picture of the AHCAL at Testbeam

> Dimensions: 72 cm × 72 cm × 75 cm
> Absorber: Stainless Steel

> Depth: ∼ 4 λI over 38 Layers
> Regular cell geometry;
> Total Channels: 21,888.
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Simulation Information: Summary.
Simulation of π− hadronic showers
using Geant4 in the AHCAL were used:

> full detector simulation (inc. SiPM
saturation/noise thresholds etc.)

> Physics list: QGSB_BERT

> Based on June 2018 CALICE
Testbeam taken at SPS;

> Cuts:

> Punch-through Pion
Removal:
NHits > 50

> Simulated particle energies:
10, 20, 30, 40, 50, 60, 70, 80 GeV

Example event display of a 80 GeV
negative pion detected by the AHCAL
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Typical Detector Observables.

Observables measured by the CALICE AHCAL.
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Simulation: Creating a Multi-Shower Dataset.

Outline of the algorithm chosen to create augmented data
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Simulation: Some Strategies for Data Augmentation.

> Extreme care was taken to
bias dataset ’intelligently’;

> In particular:
> Shower energy:

Intrinsic calorimeter
resolution means network will
learn total shower energy
distribution.

> Average initial separation:
If showers not placed
’reasonable’ distance apart,
the network will not experience
a wide variety of shower
separation cases.

Jack’s ’intelligent’ biases
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Simulation: Some Strategies for Data Augmentation.

> Random selection of
shower energy distribution
weighted to be isotropic at
the level of reconstructed
energy.

Entire combined shower energy distribution of the
simulation, before and after augmentation.
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Simulation: Some Strategies for Data Augmentation.

> Energy-weighted
eigen-ellipsoids calculated for
training set’ using PCA;

> Ellipsoids de�ne ’shower
volume’ on a shower-by-shower
basis, based on statistics;

> Using ellipsoid solving algorithm,
calculate: Distance at which two
showers must be separated in
order that the ellipsoids are
just touching i.e. energy
contained separable by a plane. Two separated ’shower volumes’, separable by a

plane.
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Simulation: Some Strategies for Data Augmentation.

> rsep = 200mm chosen;
> Corresponds to R = 7

calorimeter cells;
> Reasoning for study

obvious:
> at rsep = 100mm,

most of training
dataset unable to be
intrinsically resolved;

> at rsep = 300mm,
most of training
dataset resolvable
with a linear
discriminant.

Combined multi-shower event.
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Simulation: Example Event Display.

Combined multi-shower event. Recovered energy fractions and removed MIP Track
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Simulation: Some Summary Checkplots.
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Network: Figures of Merit and Hyperparameters.

Figures of merit:

> Loss Function:

L =
∑
k

∑
i

√
Eitik (pik − tik)2∑

i

√
Eitik

(1)

Mean-square error, weighted with the square-root of the
true cell energy.

> Accuracy Function:

A =
NEvents(0.7 <

Epred

Etrue
≤ 1.3)

NEvents
(2)

Ratio of number of charged particles with 70%-130% of
their true, reconstructed energy predicted to all charged

particle

All �gures of merit and choice of
hyperparameters used were de�ned in the
reference paper [2].

> Batch Size: 20 events

> Total Nepochs : 20

> Training Size: 1× 105 Events

> Test Size: 1× 104 Events (10 % of Training Size)

> Validation Size: 3× 104 Events (30 % of Training
Size)

> Optimizer: ADAM

> Learning Rate: 3× 10−4

> Scheduler: Exponential Decay, Factor = 0.99

> Resources: Nvidia P100

E −→ Ground Truth Energy [MIP];
t −→ Ground Truth Fraction;
p −→ Predicted Fraction;
i −→ Index of Energy Deposition;
k −→ Index of Shower;
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Network: Main Architecture.

Visual depiction of the neural network inspired by the ’segmentation network’ in “ Dynamic
Graph CNN for Learning on Point Clouds" [1]
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Network: Standard Convolutional Block.

Convolutional block architecture. Complete network has 991,679 learnable weights
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Network: Dynamic Graph Convolutional Block.

Dynamic Graph Convolutional block architecture. Complete network has 977,024 learnable weights.
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Network: GravNet Block.

GravNet Convolutional block architecture. Complete network has 980,042 learnable weights.
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The Experiment.

> Train a series of shower separation networks, with and
without time as an input variable;

> Is there an improvement in energy resolution?

> Is there a correlation between the shower fractions and
energy?

> Obtain samples of charged-neutral hadronic shower pairs
with decreasing time resolution from 0ns to 2ns;

> How does network performance change as time resolution
degrades over this range?
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Results: Loss and Accuracy Curves.
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Results: Overall Energy Reco Performance.
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Results: Energy Reco Performance vs. Beam Energy.
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Results: DGCNN, Fraction vs Energy.
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Results: Perfect Time Resolution Networks vs. ↓ Time Res. .
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Results: 1ns Time Resolution Networks vs. ↓ Time Res. .
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Conclusion.
> An e�cient multi-shower simulation tool was developed;

> Small improvement in clustering performance using perfect
time resolution:

> maximum relative factor of ∼ 20%’
> maximum absolute improvement in resolution of ∼ 500 MeV.

> DGCNN Network is able to learn fraction energy correlations,
but not for low energy hits;

> Improvement with graph networks due to time is highly
dependent on training distribution.

> Tentatively, improvement due to time is no longer useful after ∼
1.5ns time smearing;

> Overall, is small clustering improvement even worth having time as a
calorimeter variable?
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Results: Perfect Time Resolution Networks vs. ↓ Time Res. .
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Results: 1ns Time Resolution Networks vs. ↓ Time Res. .
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Results: Perfect Time Resolution Networks vs. ↓ Time Res. .
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Results: Loss and Accuracy Curves, 1ns Time Res.
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Simulation: Cut MIP Energy Spectrum.

Total energy spectrum for sum of cut MIP hits, event by event. Theoretical value for Bethe-Bloch energy loss in iron should
be ∼ 0.18 GeV
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