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The need for sophisticated hadron shower clustering.

> International Large Detector (ILD)

required to distinguish hadronic decays %1400 : a)l B 195 GeV
of W and Z bosons; O1200F wiz= ]
) [
> Pandora Particle Flow is current %1000 - 3
state-of-the-art for W-Z jet energy 2 -
resolution (05 /E = 3.8%); 800 7
> Pandora PFA [3] relies upon sophisticated 600 - 7]
clustering for particle showers in highly 400 - E
granular calorimeters. s
. o . . 200 |- { .
> Machine Learning is a rapidly developing s &
science, with many state-of-the-art [ e
applications in clustering. 60 80 100 120

M,/GeV
> Can machine learning be used to aid in
PFA clustering?
Reconstructed invariant mass distributions for
> Does a temporal calorimeter aid in the hadronic system in simulated

clustering? ZZ — ddvo and WTW~ — udp~ 7 [3]
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'M.A. Thomson. “Particle flow calorimetry and the PandoraPFA algorithm”. In: (2009).
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Goals

Predict the fraction of energy belonging to two hadronic
showers observed in AHCAL, cell by cell, using existing
state-of-the art machine learning methods.
> State of the art machine learning uses graph networks to achieve
separation.
> Several options for shower separation discussed in paper:

> Standard Convolutional Neutral Network;
> Dynamic Graph Convolutional Neutral Network (DGCNN)!
> GravNet? ;

> |s time a useful variable for hadronic shower clustering?
> What is the effect of time resolution on network performance?

Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds. 2018. arXiv:
1801.07829.

?Shah Rukh et al Qasim. “Learning representations of irregular particle-detector
segmetry with distance-weighted graph networks”. In: (2019). ISSN: 1434-6052.
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https://arxiv.org/abs/1801.07829

Simulation Information: Calorimeter Design

L
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Picture of the AHCAL at Testbeam

> Dimensions: 72 cm X 72 cm X 75 cm
> Absorber: Stainless Steel
> Depth: ~ 4 )\ over 38 Layers
> Regular cell geometry;
> Total Channels: 21,888.
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Simulation Information: Summary

Simulation of 7~ hadronic showers
using Geant4 in the AHCAL were used: L 300

®  Esym = 98.909 GeV.

> full detector simulation (inc. SiPM
saturation/noise thresholds etc.)

> Physics list: QGSB_BERT

> Based on June 2018 CALICE
Testbeam taken at SPS;

Energy [MIP)

> Cuts:

> Punch-through Pion
Removal:
NHits > 50

Example event display of a 80 GeV

> Simulated particle energies: negative pion detected by the AHCAL
10, 20, 30, 40, 50, 60, 70, 80 GeV
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Typical Detector Observables

Local Co-ordinates (Cell-wise)
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Global Shower Variables:
N - .
E = Ei:oE"" [MIP] N, =|HitCells| [Count]

His

R N 3
= o B
v 2
Total Reconstructed Energy Total Number of Active Cells Center of Gravity
(Energy-Weighted Mean
Position of Shower)

Observables measured by the CALICE AHCAL.
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Simulation: Creating a Multi-Shower Dataset

0% -

1. Choose 2 random
charged pion events;

= v @—zows.::> Keca < Koo
Ecq <3
R, < 3Cel].5

2. Displace events in shower

a circle of a given radius 3. Apply Containment 4. Apply MIP Cut to emulate
within the calorimeter; & Time Gate Criteria neutral particle;

@ _HogE el

4. Require at least 5. Calculate energy 6. For shared hits, take earliest
20% of energy fractions in each cell; hit time as shared hit time;

of original shower
—

to remain;
5. Store events
to disk;

Outline of the algorithm chosen to create augmented data
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Simulation: Some Strategies for Data Augmentation

> Extreme care was taken to
bias dataset ’intelligently’;

> In particular:

> Shower energy:
Intrinsic calorimeter
resolution means network will
learn total shower energy
distribution.

> Average initial separation:
If showers not placed
‘reasonable’ distance apart,
the network will not experience . . .
a wide yariety of shower JaCk'S ,|nte|||gent' b|aSeS

separation cases.
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Simulation: Some Strategies for Data Augmentation

All Beam Energies

> Random selection of w
shower energy distribution - N
weighted to be isotropic at =
the level of reconstructed g
energy. T

4 60
Esum [GeV]

Entire combined shower energy distribution of the
simulation, before and after augmentation.
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Simulation: Some Strategies for Data Augmentation

Charged Shower
Exum= 37331 Gev
Fraction of Exyp in Elfpsoid = 99.890 %

. 100
> Energy-weighted N v

eigen-ellipsoids calculated for Frcn i id =702 %

training set’ using PCA; ’

> Ellipsoids define 'shower
volume’ on a shower-by-shower
basis, based on statistics;

L3

Energy [MIP]

> Using ellipsoid solving algorithm,
calculate: Distance at which two
showers must be separated in
order that the ellipsoids are

just touching i.e. energy , ,
contained separable by a plane. Two separated 'shower volumes’, separable by a

plane.
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Simulation: Some Strategies for Data Augmentation

> 7sep = 200mm chosen;

> Corresponds to R =7
calorimeter cells;

> Reasoning for study
obvious:

CAI.l@

> at rgep = 100mm,
most of training
dataset unable to be
intrinsically resolved;

> at 7gep = 300mm,
most of training
dataset resolvable
with a linear
discriminant.

Mean Fraction of Separable Energy

100 200 300 400 0
Fsep [mm]

Combined multi-shower event.
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Simulation: Example Event Display

Combined Showers
Exum = 57.180 GeV.

Energy [MIP]

Combined multi-shower event.
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Charged hower
Ecin = 40501 6oV

10
Neutral Shower
Ecin = 16,540 Gav

Removed MIP Track
* En=0520Gey

100

100

Recovered energy fractions and removed MIP Track




Simulation: Some Summary Checkplots

Al Simulated Beam Energies

Al Simulated Beam Energies
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Network: Figures of Merit and Hyperparameters

Figures of merit:

> Loss Function:

VEitik (pir — tir)’

L=y & 1)
z,c: 2 VEitix
M quare error, weighted with the square-root of the

true cell energy.

> Accuracy Function:

E e
_ Npvents (0.7 < Fed <1.3)

A= true (2)

NEvents

Ratio of number of charged particles with 70%-130% of
their true, reconstructed energy predicted to all charged
particle

CAI.l@

All figures of merit and choice of
hyperparameters used were defined in the
reference paper [2].

> Batch Size: 20 events

> Total Nepochs: 20
> Training Size: 1 X 10° Events
> Test Size: 1 x 104 Events (10 % of Training Size)

> Validation Size: 3 X 104 Events (30 % of Training
Size)

> Optimizer: ADAM
> Learning Rate: 3 X 10-4
> Scheduler: Exponential Decay, Factor = 0.99

> Resources: Nvidia P100

E — Ground Truth Energy [MIP];
t — Ground Truth Fraction;

p — Predicted Fraction;

i — Index of Energy Deposition;
k — Index of Shower;
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Network: Main Architecture

Data Legend
Point Cloud: Batch x Vertices x Features x BN Batch Normalization 0

=} Fuly Connected Layer
Big Block: Batch x Filters x 1 x J x K @ DO Dropout

Leaky ReLU

Operation
[/ softmax
5 concatenation

Input/Output
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Output s fed to the next block
and saved at each stage.

ouputs
concatenated

‘m. o s sca masimum

Visual depiction of the neural network inspired by the 'segmentation network’ in “ Dynamic
Graph CNN for Learning on Point Clouds" [1] UH
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Jack Rolph | UHH | November 10, 2020 | Page 15 n




Network: Standard Convolutional Block

Input:
Big Block:

Batch x Filters X | x J X K @

Legend

BN Batch Normalization _n
# Fully Connected Layer
e

DO Dropout
Leaky ReLU
Operation
m Softmax
@ Concatenation
Input/Output

3D Convolutional Block

Preprocessing

BN

Convolutional block architecture. Complete network has 991,679 learnable weights
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Network: Dynamic Graph Convolutional Block

Fully Connected Layer
I Operation
I Input/Output

*NOTE:
1= SPATIAL CO. ONLY (1J K)
ITERATION > 1 = ALL CO-ORDINATES (IJKET)

Input: xX, Legend
Point Cloud:  Batch x Vertices x Features |
BN Batch Normalization
E DO Dropout
E— Leaky ReLU
7] softmax
iterations" = 4
Edge Conv @ c
BN BN
+ +
+ 5
o
] —> @ max(k)—>
64 64
Graph Feature

snmmnm Get k-Nearest

Seperate out

Neighbours _Points and edges

Dynamic Graph Convolutional block architecture. Complete network has 977,024 learnable weights.
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Network: GravNet Block

Input:
Point Cloud:

x *’(
Batch x Vertices x Features [ X

EI.!TE

* iterations = 3

GravNet Convolutional Block

Legend

BN Batch Normalization

Fully Connected Layer
I Operation

DO Dropout
Leaky ReLU
m Softmax

] concatenation

I Input/Output

BN *NOTE:
+ 1= SPATIAL CO- ONLY (1 U K)
ITERATION > 1 = ALL CO-ORDINATES (1 K E T)
-
48 H
GravNet Operator
foali .
{#u]0 [dul—>- ¢ 77 .
- R et
SassFuncion
Distance
Matix
I -
2

11

GravNet Convolutional block architecture. Complete network has 980,042 learnable weights.
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The Experiment

> Train a series of shower separation networks, with and
without time as an input variable;

> |s there an improvement in energy resolution?

> |s there a correlation between the shower fractions and
energy?

> Obtain samples of charged-neutral hadronic shower pairs
with decreasing time resolution from Ons to 2ns;

> How does network performance change as time resolution
degrades over this range?

UH
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Results: Loss and Accuracy Curves

Average Training Loss.

Average Training Loss
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Results: Overall Energy Reco Performance

Charged, DGCNN

L ——

= ] 3 B = o 3
Esum, ue = Esum,peco [GEV] Esum, rve = Esum,neco [GeV]

e T TN ——

Ratio

- E [ 3
Esum, rue = Esum,fsco [GEV]
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Results: Energy Reco Performance vs. Beam Energy

DGCNN GravNet
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Results: DGCNN, Fraction vs Energy

75 100
Eve

Fraction, DGCNN, With Time

l.|<
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4 6 8 10 12 14

RMS30 (Esum, Twe = Esum, reco) [GeV]

2

Perfect Time Resolution Networks vs. | Time Res.
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Results: Ins Time Resolution Networks vs. | Time Res.
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Conclusion

>

>

CAI.l@

An efficient multi-shower simulation tool was developed;

Small improvement in clustering performance using perfect
time resolution:

> maximum relative factor of ~ 20%’
> maximum absolute improvement in resolution of ~ 500 MeV.

DGCNN Network is able to learn fraction energy correlations,
but not for low energy hits;

Improvement with graph networks due to time is highly
dependent on training distribution.

Tentatively, improvement due to time is no longer useful after ~
1.5ns time smearing;

Overall, is small clustering improvement even worth having time as a

calorimeter variable?
UH
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Results: Perfect Time Resolution Networks vs. | Time Res.
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Results: Ins Time Resolution Networks vs. | Time Res.
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Results: Perfect Time Resolution Networks vs. | Time Res.
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Results: Loss and Accuracy Curves, Ins Time Res

Average Training Loss Average Training Loss
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Simulation: Cut MIP Energy Spectrum

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

All Simulated Beam Energies

N :1.92E+05

Mean : 4.11E-01
—— Std. Dev : 3.16E-01

Skewness : 1.46E+00

Kurtosis : 2.80E+00

0.00 025 0.50 0.75 1.00 125 150 175 2.00
Esum, mp [GeV]

Total energy spectrum for sum of cut MIP hits, event by event. Theoretical value for Bethe-Bloch energy loss in iron should

be ~ 0.18 GeV
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