## Simulation and Analysis TF

Gianluca, Tony, Noam

WEIZMANN INSTITUTE OF SCIENCE



### Intro

#### 

### Some background insights

#### Tony: signals with new mesh?

#### Sasha:

% electron+laser G4 generation starting from the signal from tony w/o the beam component (status?) starting from beam-only generation (done part of 1 BX, right?) 《》 ❀ campaign with the beampipe in the FWD part?

Arka: scrutinised study of the background for the tracker

Noam Tal Hod, WIS



### **IP LANEX+Cherenkov**

Saw inconsistencies in the positions of the IP LANEX+Cherenkov for the low/high- $\xi$ runs (using high/low-B)

 $\ll$  High-B runs (low- $\xi$ )

❀ e-beam will destroy the LANEX

the bkg is too large for the Cherenkov

Low-B runs (high-
$$\xi$$
)

- \*\* the LANEX position was not optimal (lot's of signal lost)
- Ruth and John have introduced a slightly modified geometry
  - will need to be able to move the 《》 LANEX+Cherenkov by  $\pm 5$  cm
  - should put in the model 貒
- We still need to think how to define the dump to suit the two B-field value (and maybe also different beam energies?)





\* wall thickness can surely be optimised



# Backgrounds table

Backgrounds are collected in this <u>spreadsheet</u> \* please feel free to change the layout of the spreadsheet according to your system's needs

| ELUXE with GEANT4 ☆ ⋽ ⊘ File Edit View Insert Format Data Tools Add-ons Help Last edit was seconds ago |                      |                 |          |                     |          |          |            |          |   |   |
|--------------------------------------------------------------------------------------------------------|----------------------|-----------------|----------|---------------------|----------|----------|------------|----------|---|---|
| ► ~ = = 100% · \$ % .0 .0 123 · Arial · 10 · B I · A E · E · Ξ · Ξ ·                                   |                      |                 |          |                     |          |          |            |          |   |   |
| $f_X$                                                                                                  |                      |                 |          |                     |          |          |            |          |   |   |
|                                                                                                        | А                    | В               | С        | D                   | E        | F        | G          | Н        | I |   |
| 1                                                                                                      |                      |                 |          |                     |          |          |            |          |   |   |
| 2                                                                                                      |                      |                 |          | N(Inclusive) per BX |          |          | >1 GeV) pe | r BX     |   | M |
| 3                                                                                                      | system               | location        | Ŷ        | e-                  | e+       | Ŷ        | e-         | e+       | γ |   |
| 5                                                                                                      | Tracker              | L1 outer e+ arm | 2.55E+05 | 4.02E+03            | 4.10E+02 | 9.90E-04 | 0.00E+00   | 1.84E-01 |   |   |
| 6                                                                                                      |                      | L2 inner e+ arm | 6.62E+05 | 2.10E+04            | 7.74E+02 | 6.00E-03 | 0.00E+00   | 1.11E+00 |   |   |
| 7                                                                                                      |                      | L2 outer e+ arm | 1.89E+05 | 4.99E+03            | 3.32E+02 | 3.00E-03 | 0.00E+00   | 2.31E-01 |   |   |
| 8                                                                                                      |                      | L3 inner e+ arm | 8.67E+05 | 2.56E+04            | 8.69E+02 | 1.10E-02 | 0.00E+00   | 1.07E+00 |   |   |
| 9                                                                                                      |                      | L3 outer e+ arm | 1.16E+05 | 5.47E+03            | 4.26E+02 | 6.00E-03 | 0.00E+00   | 2.82E-01 |   |   |
| 10                                                                                                     |                      | L4 inner e+ arm | 9.03E+05 | 3.02E+04            | 1.17E+03 | 1.70E-02 | 0.00E+00   | 1.03E+00 |   |   |
| 11                                                                                                     |                      | L4 outer e+ arm | 6.07E+04 | 6.25E+03            | 3.32E+02 | 1.10E-02 | 1.00E-03   | 3.35E-01 |   |   |
| 12                                                                                                     | Calo                 | e- arm          |          |                     |          |          |            |          |   |   |
| 13                                                                                                     |                      | e+ arm          |          |                     |          |          |            |          |   | 4 |
| 14                                                                                                     | IP LANEX low-xi      | e- arm          | 4.00E+06 | 1.14E+12            | 3.40E+03 | 3.84E+04 | 0.00E+00   | 0.00E+00 |   | _ |
| 15                                                                                                     | IP LANEX high-xi     | e- arm          | 3.40E+07 | 9.01E+06            | 1.38E+04 | 1.46E+05 | 6.42E+02   | 0.00E+00 |   | _ |
| 16                                                                                                     | IP Cherenkov low-xi  | e- arm          | 1.20E+08 | 2.34E+07            | 6.73E+06 | 4.47E+05 | 4.61E+04   | 5.13E+04 |   | _ |
| 17                                                                                                     | IP Cherenkov high-xi | e- arm          | 4.33E+08 | 1.06E+08            | 2.80E+07 | 1.19E+07 | 1.31E+06   | 1.32E+06 |   | _ |
| 18                                                                                                     |                      | e- arm          |          |                     |          |          |            |          |   |   |
| +                                                                                                      |                      |                 |          |                     |          |          |            |          |   |   |
| Nov 10 2020                                                                                            |                      |                 |          |                     |          |          |            |          |   |   |

#### Noam Tal Hod, WIS



4

# **Background for y+laser**

- - \* why do we have ~10 times more electrons on the e+ side than positrons on the e- side?
- Tracker (mostly low-E particles)
  - Positrons: manageable rate at very low energies
  - ℁ Electrons: ∼manageable rate
  - \* Photons: peaking below 1 MeV, mostly flat above that
    - for a photon of 1 MeV, practically all absorption in Si is due to Compton scattering with an absorption coefficient  $\sigma \sim 10^{-1}$  cm<sup>-1</sup>. In a 300 µm thick detector, only 0.3% will interact. For 95% absorption, the detector must be 30 mm thick. Even then, the scattered photon may still leave the absorber without further interaction, so only a fraction of the primary photon energy remains in the detector. For full energy absorption with good efficiency the detector would have to be made even larger.
    - \* the absorption of 10 keV photons in Si is dominated by the photoelectric effect with  $\sigma \sim 10^2$  cm<sup>-1</sup>. If a detector is 300 µm thick, i.e.  $\sigma x \sim 3$ , then 95% of the photons will interact in the detector. Since the range of the emitted photoelectron is about 1 µm, all of the primary energy is absorbed in the detector volume. The absorption coefficient decreases rapidly with energy.

#### Noam Tal Hod, WIS



5

## **Background for e+laser (JETI40)**

- - \* pair production signal for the IP system should be at the level of  $\sim 1 e^+/BX$
  - \* Compton rates at the FWD spectrometer are much larger
- - \* how can it be that you see lower rates for the low- $\xi$  (high-B) runs? (where the beam is crossing the window and the LANEX)
  - \* we've seen from John that these are very low energy particles
- **I weight and a set weight weight and a set weight and a set of the set of t** 
  - $\ll$  why do we have ~10 times more electrons on the e+ side than positrons on the e- side?
  - ✤ please add the photons for LANEX
  - please add the FWD Cherenkov
- Tracker (mostly low energy particles)
  - ✤ Positrons: manageable rate? (~ 2 MeV)

  - \* Photons: peaking below 1 MeV, mostly flat above that
  - Most of it comes from the beam crossing the LANEX (see later talk by Arka)

Noam Tal Hod, WIS









# **Background for e+laser (PhaseII)**

- - \* pair production signal for the IP system should be at the level of  $\sim 70 \text{ e} + BX$
  - \* Compton rates at the FWD spectrometer are much larger
- ℁ IP LANEX+Cherenkov: we've seen from John that these are very low energy particles
- **I weight and a set and a set of the set of**
- Tracker (mostly low energy particles)

  - Electrons: manageable rate? (~2 MeV) 貒
  - Photons: peaking below 1 MeV, mostly flat above that
  - Most of it comes from the beam crossing the 貒 LANEX (see later talk by Arka)

Noam Tal Hod, WIS









### Summary

New configuration from Ruth and John looks better <sup>™</sup> will need to make sure we can move the setup \* need to decide about the dump (maybe not urgent for the CDR?)

- looks manageable for the tracker
- will probably be the same for the calo
- manageable already

<sup>™</sup> looks too high to start with for the tracker (similar for the calo?) \* can be reduced with minor changes to the setup Not sure if it is also too high for the IP LANEX+Cherenkov \* but it can be reduced with minor changes to the setup looks manageable for the FWD LANEX

<sup>™</sup> for the FWD spectrometer it strongly depends on the beampipe (y/n) but the numbers look



# Distances full range



#### Noam Tal Hod, WIS





### Distances IP area



#### Noam Tal Hod, WIS

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_5.jpeg)

### Distances FWD area

![](_page_10_Figure_1.jpeg)

Noam Tal Hod, WIS