# Path Integrals for the Universe

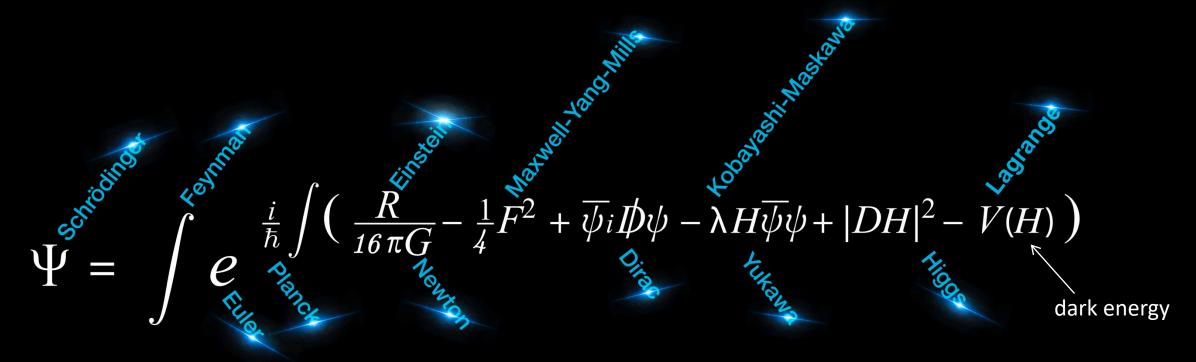
Neil Turok

# interference

basic to quantum physics

universal

### all known physics



$$\psi = (u_L, d_L, u_R, d_R, u_L, d_L, u_R, d_R, u_L, d_L, u_R, d_R, e_L, v_L, e_R, v_R) \times 3$$

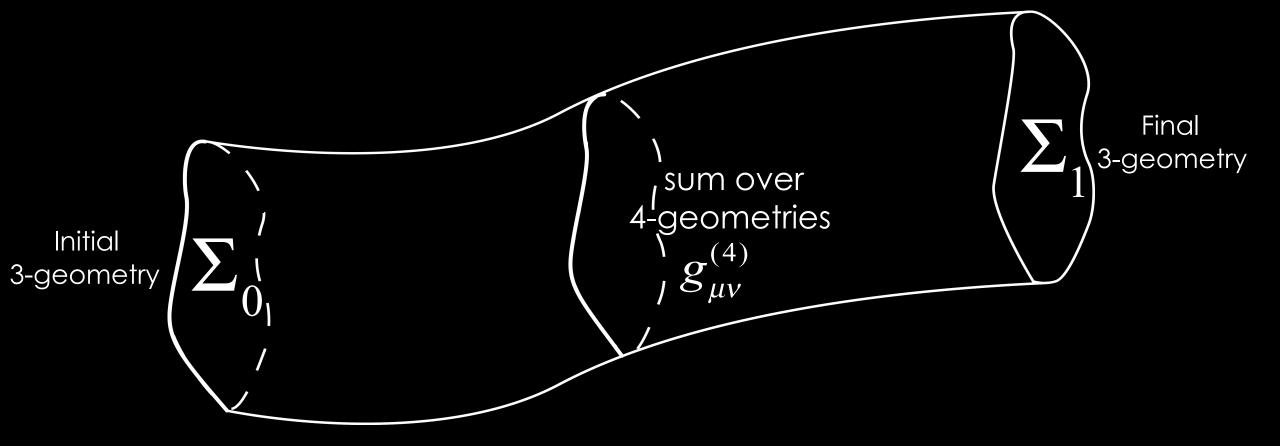
dark matter Boyle, Finn, NT 2018 all known physics

$$\Psi = \begin{pmatrix} u_{1}, d_{1}, u_{R}, d_{R}, u_{1}, d_{1}, u_{R}, d_{1}, u_{1}, d$$

But "the Lorentzian path integral is ill defined"

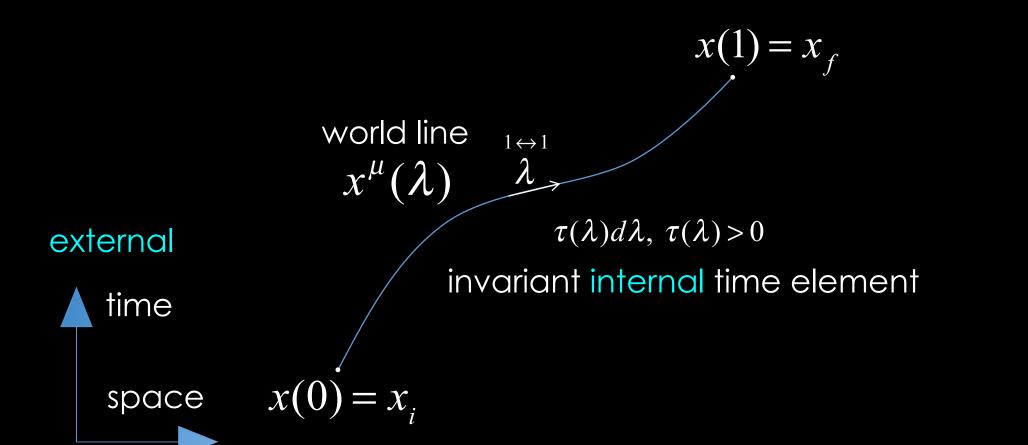
e.g. Mukhanov +Winitzki 2005

# quantum geometrodynamics

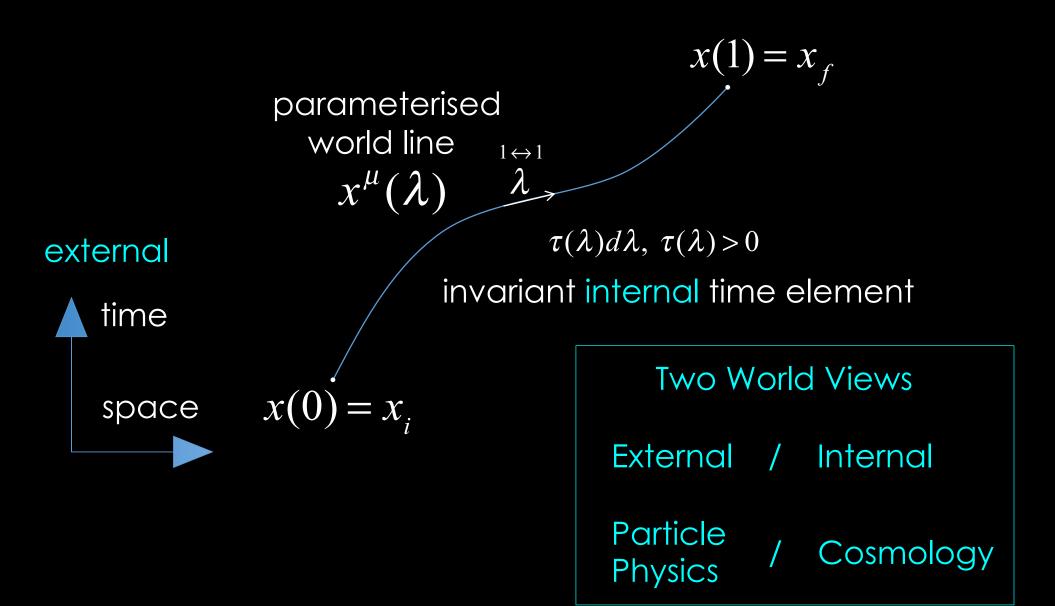


can we make progress with a single-universe picture?

### Quantized relativistic particle



### Quantized relativistic particle

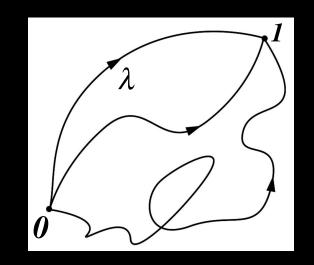


amplitude for a particle initially at  $x_0^{\mu} \equiv (t_0, \vec{x}_0)$  to be found at  $x_1^{\mu}$ Internal time unobserved so integrate over all allowed (+ve) values

propagator: 
$$K(x_1, x_0) = \int_{0^+}^{\infty} d\tau \int_{x_0}^{x_1} Dx \, e^{i\frac{S}{\hbar}}$$

action: 
$$S = \frac{m}{2} \int_0^1 d\lambda \left( \frac{\eta_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}}{\tau} - \tau \right)$$

As we shall see, answer unique, equivalent to  $i\epsilon$ 



FT wrt space 
$$K(t_1, t_0, \vec{k}) = e^{i\frac{\pi}{4}} \int_0^\infty d\tau \sqrt{\frac{\mu}{2\pi\tau}} e^{-i\frac{\mu}{2}(\frac{(t_1 - t_0)^2}{\tau} + \frac{\omega_k^2}{\mu^2}\tau)} = \frac{\mu}{\omega_k} e^{-i\omega_k|t_1 - t_0|}$$

Particles propagate forward in time, antiparticles backward

cf QFT propagator

dimensionless: 
$$\delta(t_1-t_0)\int d\tau \ c=1; \vec{p}=\hbar\vec{k}; E=\hbar\omega; m=\hbar\mu; q=\hbar \ e$$
 etc

Spacetime amplitude approach to relativistic QM

 $\psi(x) = \psi(t, \vec{x})$  amplitude for particle to be at spacetime point  $t, \vec{x}$ .

Inner product:

$$(\psi,\chi)=\int d^4x\ \psi^*(x)\chi(x) \Longrightarrow$$
 positive probabilities (cf KG norm)

Regularize covariantly: use  $\mu'$  on left and  $\mu$  on right in inner product

On-shell states: 
$$\psi_{\vec{k}}^+ = c e^{-i(\omega_k t - \vec{k} \cdot \vec{x})}$$
;  $\omega_k \equiv \sqrt{k^2 + \mu^2}$ 

$$(\psi_{\vec{k}'}^+, \psi_{\vec{k}}^+) = \lim_{\mu' \to \mu} |c|^2 \, \delta(\sqrt{k^2 + \mu'^2} - \sqrt{k^2 + \mu^2}) \, |_{\text{coefft of } \delta(\mu' - \mu)} = |c|^2 2 \, \omega_k$$

Derivations simplified, e.g., energy-time uncertainty relation, semi-classical and non-relativistic limits etc.

### Highly oscillatory integrals

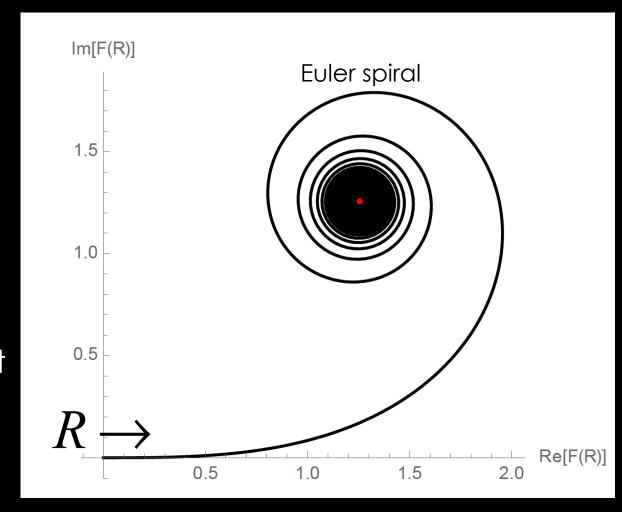
e.g., Fresnel integral

$$F(R) = \int_{-R}^{+R} e^{ix^2} dx$$

$$I = \lim_{R \to \infty} F(R) = e^{i\frac{\pi}{4}} \sqrt{\pi}$$

Conditionally, not absolutely convergent

Higher dimensional case?



2d: square cutoff 
$$\lim_{R\to\infty}\int_{-R}^R dx \int_{-R}^R dy e^{i(x^2+y^2)} = \lim_{R\to\infty} F(R)^2 = i \pi$$

2d: round cutoff

$$\lim_{R \to \infty} 2\pi \int_0^R r dr \, e^{ir^2} = \lim_{R \to \infty} \frac{\pi}{i} (e^{iR^2} - 1) = ?$$

integer d, m, d > m

d dims: sharp cutoff 
$$\int_0^R r^{d-1} dr \, e^{ir^m} \sim \frac{e^{\frac{i\pi d}{2m}} \Gamma(\frac{d}{m})}{m} - \frac{i}{m} e^{iR^m} R^{d-m} + \dots$$

more physical)

d dims: smooth cutoff (allows cancellations, 
$$\int_{0}^{\infty} r^{d-1} dr \ e^{ir^{m}} e^{-\left(\frac{r}{R}\right)^{m}} \sim \frac{e^{\frac{i\pi d}{2m}} \Gamma\left(\frac{d}{m}\right)}{m} (1 - \frac{i \ d}{m \ R^{m}} + ...)$$

(see also F.N.H. Robinson," Macroscopic Electromagnetism")

Q: can one obtain the result for an infinite, smooth cutoff without introducing a cutoff at all?

A: Yes: complex analysis (Cauchy theorem)

```
x e.g. e^{ix^4} deform at large x
```

#### higher dimensions: Picard-Lefschetz





general method for performing highly oscillatory integrals exactly via steepest descent in arbitrary finite dimension

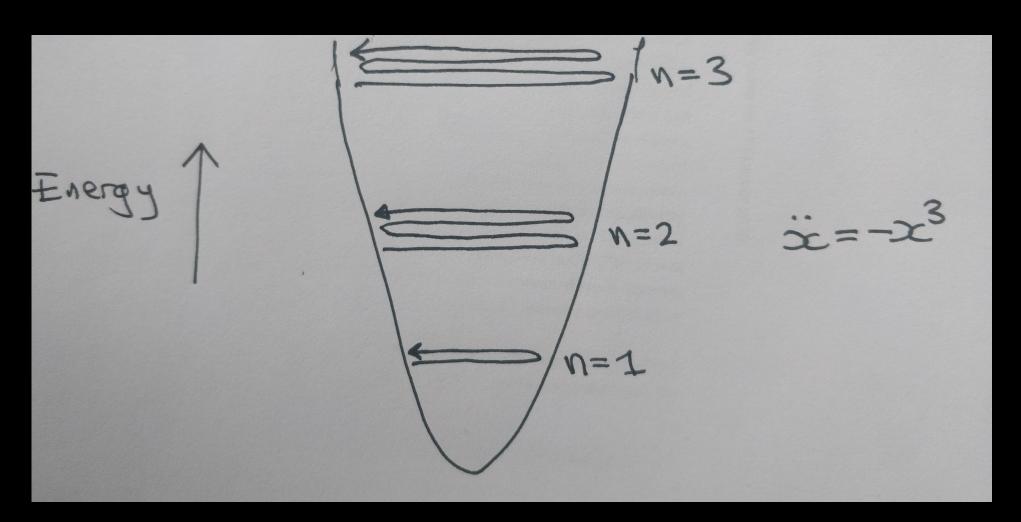
we flow the contour onto a series of relevant "Lefschetz thimbles"

new approach, provides a definition of Lorentzian path integral for gravity

We used this to disprove the Hartle-Hawking and Vilenkin proposals

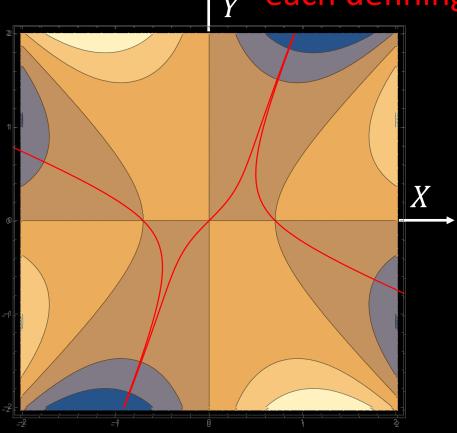
Feldbrugge Lehners NT Defining the Lorentzian path integral: e.g., anharmonic oscillator

$$S = \int \left(\frac{1}{2}\dot{x}^2 - \frac{1}{4}x^4\right)dt$$



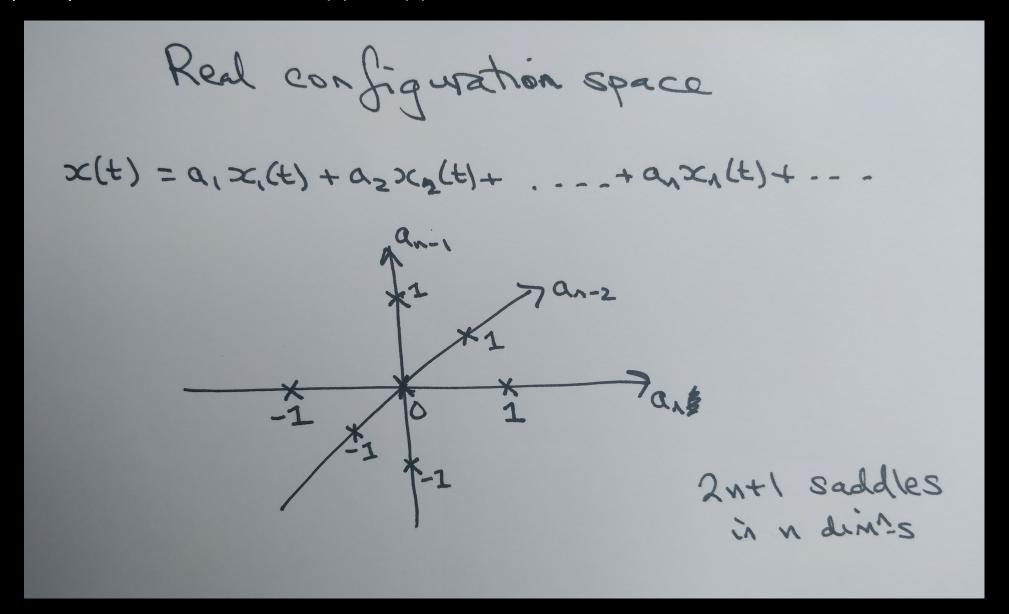
 $\gamma$  3 saddles  $\gamma$  each defining a "Lefshetz thimble"

Toy version:

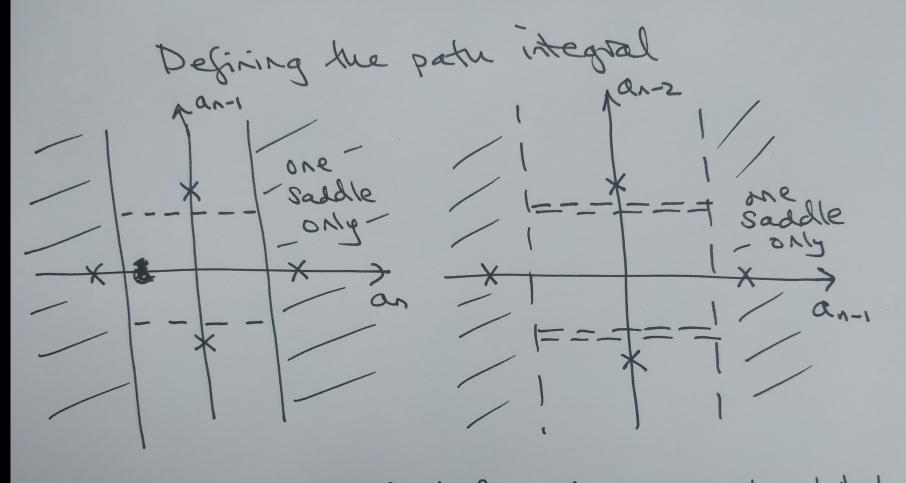


$$Re[i(x^2-x^4)]; x = X + iY$$

For simplicity, consider the case x(0) = x(1) = 0; there are an infinite number of classical solutions



infinite set of thimbles: sum over a finite number provides an intrinsic regularization



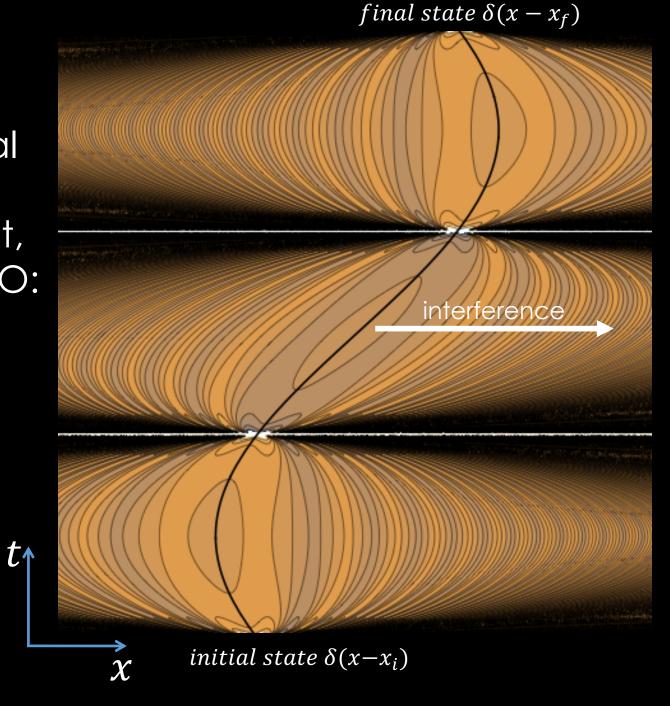
- each subintegral deformed to be absolutely convergent

emergence of spacetime: look "inside" the path integral

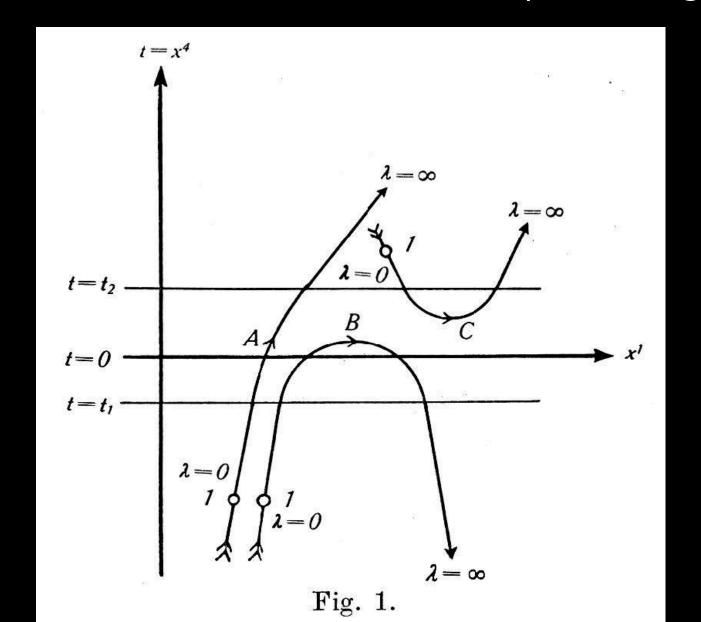
theory of weak measurement, e.g., SHO:

"weak density"  $\operatorname{Re}[\langle f | \delta(\hat{x}(t) - x) | i \rangle]$ 

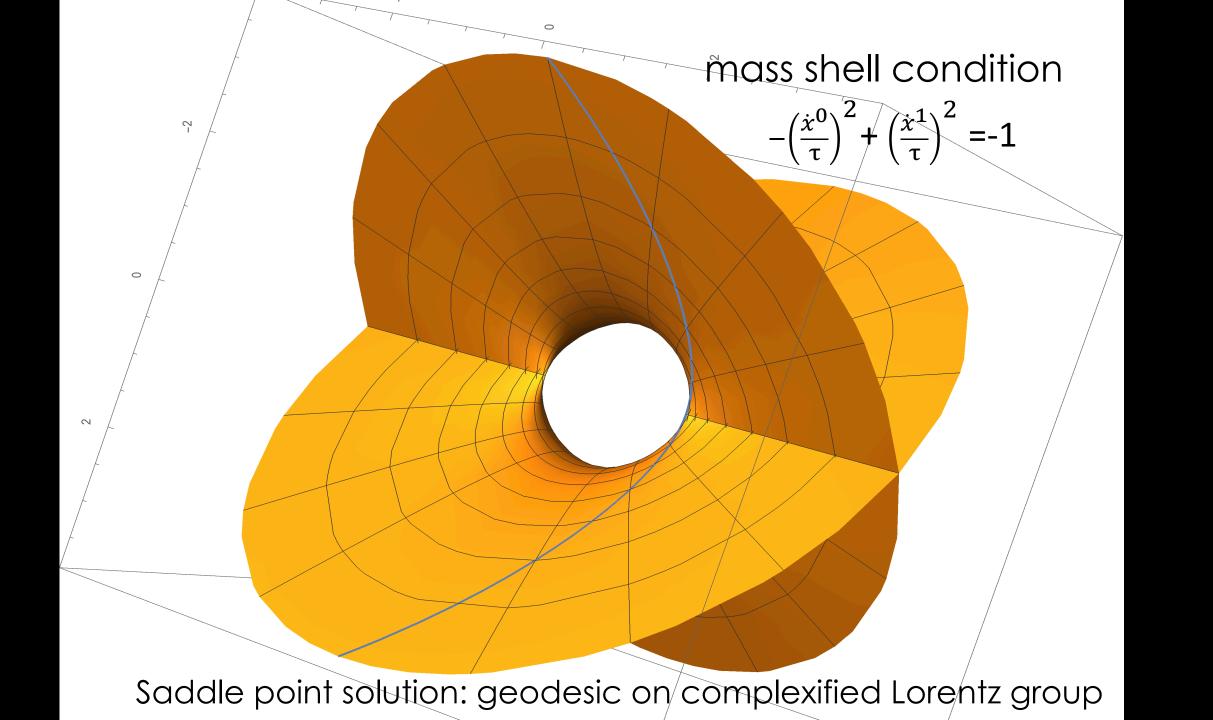
governs the response of a "weak measuring device" (von Neumann)



#### relativistic pair creation in an electric field ("Schwinger process")

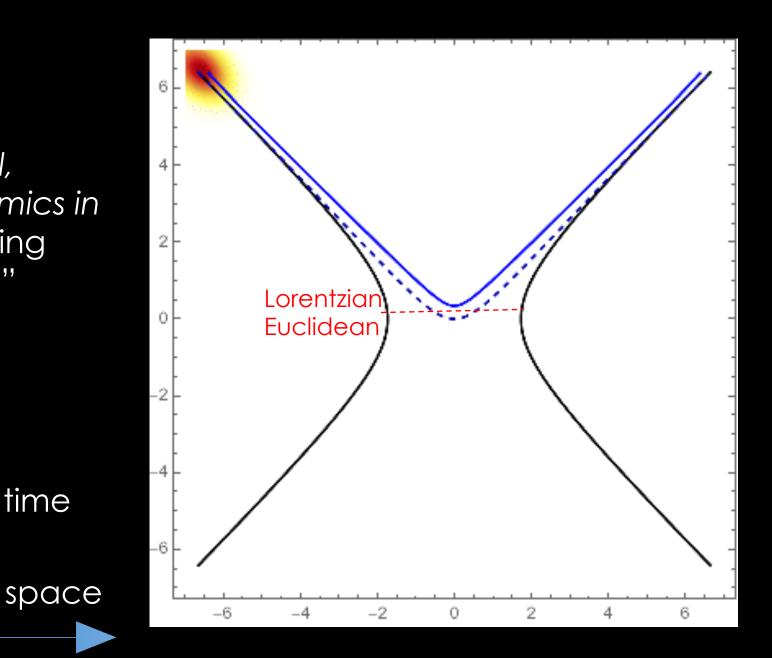


Ernst Stueckelberg 1941



Study the real, internal dynamics in spacetime using "weak values"

time



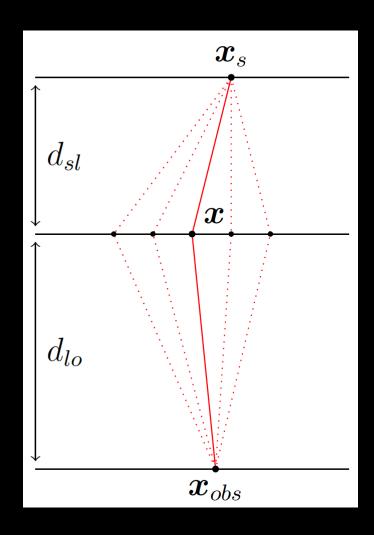
Feldbrugge Fertig Sberna NT, to appear

# application to radio astronomy

+J. Feldbrugge, U-L. Pen

(1909.04632; 2008.01154)

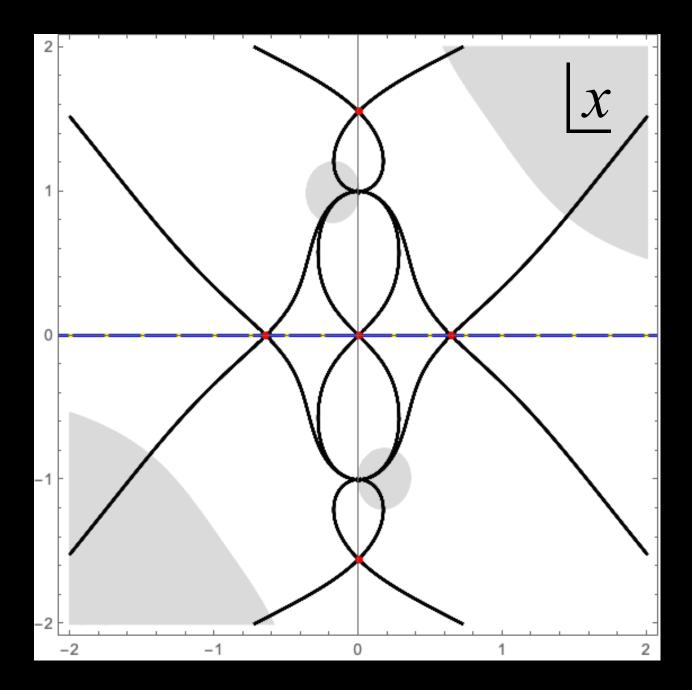
## thin plasma lens



$$\int d\vec{x}_{\perp} e^{i\omega \int |d\vec{x}| \frac{n(\vec{x})}{c}} \int d\vec{x}_{\perp} e^{i\omega \int |d\vec{x}| \frac{n(\vec{x})}{c}} \int_{\text{Refraction}} e^{i\omega \int_{2c} \left[ \frac{(\vec{x}_{\perp} - \vec{\mu})^2}{d} - \int dz \frac{\omega_p^2(\vec{x}_{\perp}, z)}{\omega^2} \right]} \int_{\text{lensing strongest at low frequencies}}$$

$$\frac{1}{\bar{d}} \equiv \frac{1}{d_{sl}} + \frac{1}{d_{lo}}; \quad n = \sqrt{1 - \frac{\omega_p^2}{\omega^2}}; \quad \omega_p^2 = \frac{n_e(\vec{x})e^2}{\varepsilon_0 m_e}$$

Flowing the contour (case b)



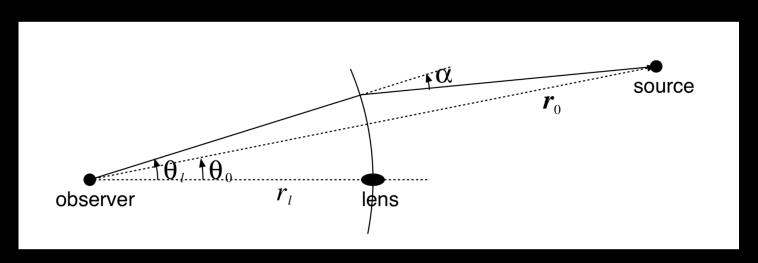
#### Gravitational Lensing

$$\Psi(\omega, \vec{\mu}) \sim \omega \int d^2 \vec{x} e^{i\omega \left[\frac{1}{2}(\vec{x}-\vec{\mu})^2-\phi(\vec{x})\right]}$$
 where

For a point mass in thin lens approx

$$\phi = \ln(x)$$
,  $\omega$  is frequency in units of  $r\theta_*^2$ ,

$$\theta_*$$
 is Einstein angle,  $\omega = 10^5 \frac{M}{M_{\odot}} \frac{v}{GHz}$ 

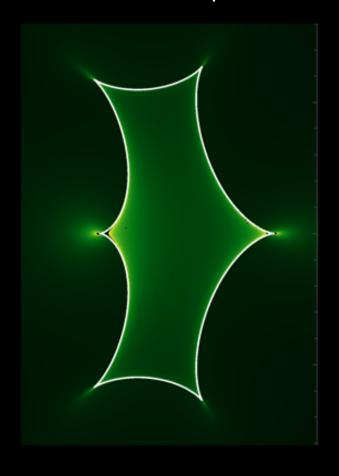


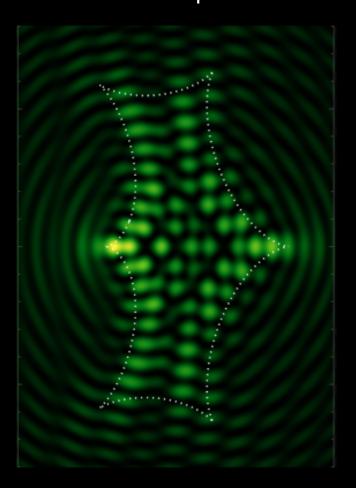
Wave optics effects in microlensing will contain vast information about e.g. lens masses

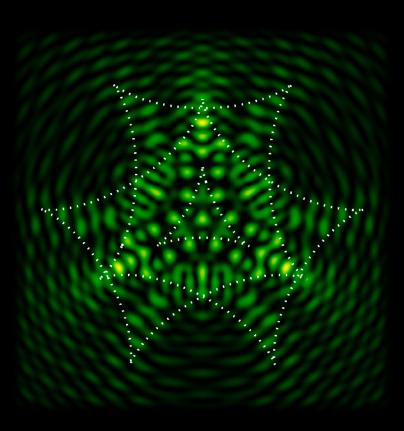
Geometric optics

Wave optics

multiple redshifts (ie 3d lens)

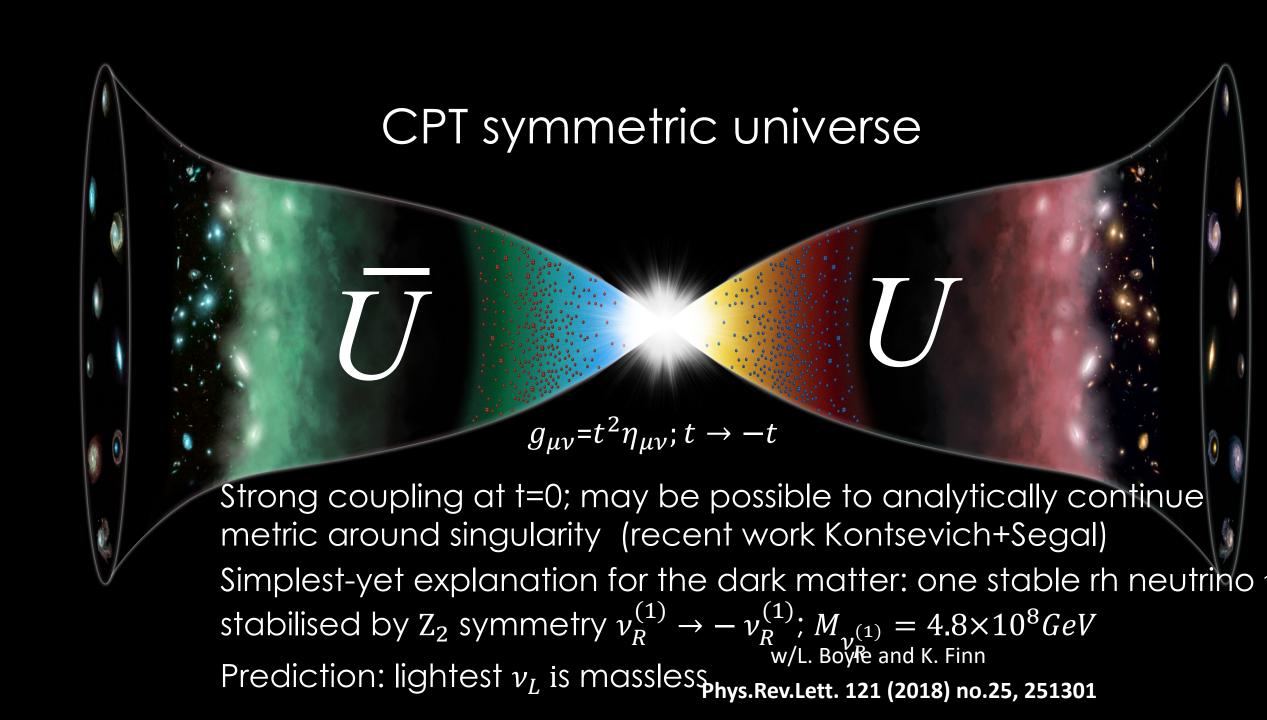




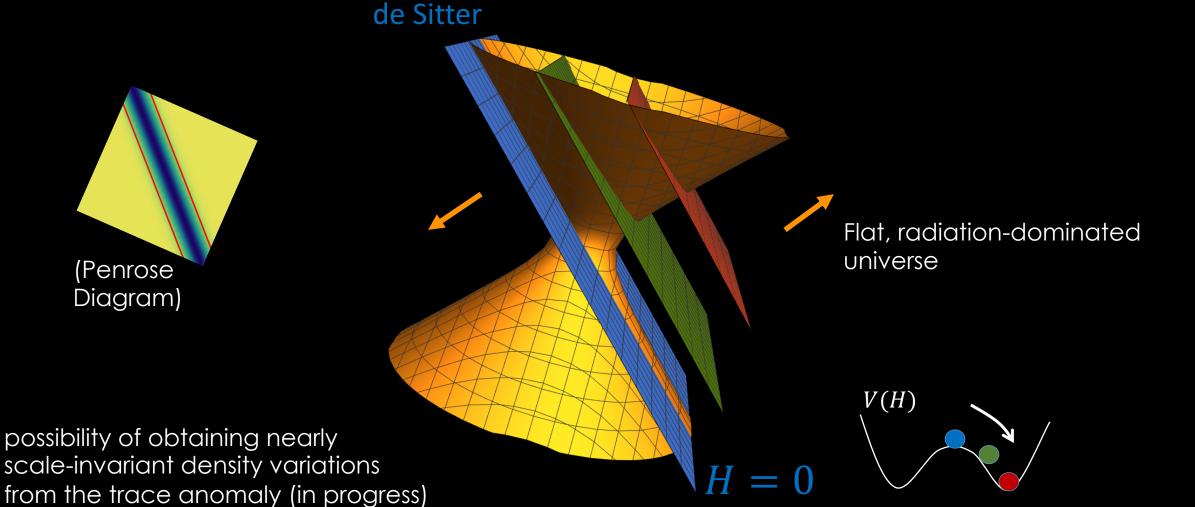


w/ J. Feldbrugge

(1909.04632; 2008.01154; 2010.03089)



#### nonsingular flat CPT-symmetric universe



#### Next steps:

Prove existence of Lorentzian PI in quantum mechanics

interactions and classical fields in the world-line picture

gravity: cosmology and black holes

Maybe we already know (most of) the fundamental laws: our job is to do the integrals...

# Ваше здоровье, Валерий!