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Overview
01 Physics-inspired neural networks

• Related works and proposed neural architecture (TM-PNN)

• Detailed example of translating ODE for pendulum oscillation into TM-PNN

02 Training
• From scratch: a general-purpose regression method for deterministic systems

• With ODE-based weights initialization

03 Application in particle accelerators
• Simulation of beam dynamics

• Data-driven model calibration (PETRAIII experiments)

• RL-enhanced control (simulated environment)
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01 Physics-inspired neural networks

▪  Related works and proposed neural architecture (TM-PNN)

▪  Detailed example of translating ODE for pendulum oscillation into TM-PNN
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Physics-inspired neural networks

Physics-Based Neural Networks for Particle Accelerators | Andrei Ivanov

several methods to incorporate physical knowledge into predictive model exist

▪ surrogate models: train a black-box model with simulated data
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Physics-inspired neural networks
several methods to incorporate physical knowledge into predictive model exist

▪ surrogate models: train a black-box model with simulated data
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▪ parametrize equation with NN or, oppositely, include equation into NN

e.g. Hamiltonian Neural Networks
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Physics-inspired neural networks
several methods to incorporate physical knowledge into predictive model exist

▪ surrogate models: train a black-box model with simulated data
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▪ parametrize equation with NN or, oppositely, include equation into NN

e.g. Hamiltonian Neural Networks
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▪ implement a numerical scheme in NN basis
�(��, ��) �(��+1, ��+1)

e.g. Neural ODE (requires numerical solvers)
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Novel approach for constructing deep neural networks 
for beam dynamics
with the following key features:

▪ accurate simulation of dynamics without training

▪ model fine-tuning with limited measurements
oral presentation at 

the European 
Conference on 

Artificial Intelligence
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The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping 
technique can be used to initialize the weights of a polynomial neural network

with the following key features:

▪ accurate simulation of dynamics without training

▪ model fine-tuning with limited measurements

Pendulum oscillation: numerical 
solution

φ =− ω2 sinφ

oral presentation at 
the European 

Conference on 
Artificial Intelligence

φ

φ 

Novel approach for constructing deep neural networks 
for beam dynamics
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with the following key features:

▪ accurate simulation of dynamics without training

▪ model fine-tuning with limited measurements

φ =− ω2 sinφPendulum oscillation:

φ
φ  �1 =      1  0.099  −7.64E−06  0

  0  1.000  −1.54E−04  0   

�2 =      0 0 0 0 0 0 −1.58E−05 0 6.11E−10 0
0 0 0 0 0 0 −4.80E−04 0 2.47E−08 0   

�3 =      0 0 0 0 0 0 0 0 0 0 0 2.46E−05 0 −2.28E−09 0 7.61E−10 5.87E−14 0 −1.95E−14 0
0 0 0 0 0 0 0 0 0 0 0 9.95E−04 0 −1.15E−07 0 3.84E−08 3.56E−12 0 −1.18E−12 0   

numerical 
solution

proposed
NN

The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping 
technique can be used to initialize the weights of a polynomial neural network

oral presentation at 
the European 

Conference on 
Artificial Intelligence

…

φ

φ 

Novel approach for constructing deep neural networks 
for beam dynamics
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with the following key features:

▪ accurate simulation of dynamics without training

▪ model fine-tuning with limited measurements

φ =− ω2 sinφ − 2γφPendulum oscillation:

φ
φ  �1 =      1  0.099  −7.79E−06  0

  0  0.990  −1.55E−04  0   

�2 =      0 0 0 0 0 0 −1.63E−05 0 6.36E−10 0
0 0 0 0 0 0 −4.89E−04 0 2.54E−08 0   

�3 =      0 0 0 0 0 0 0 0 0 0 0 2.56E−05 0 −2.39E−09 0 7.99E−10 6.23E−14 0 −2.07E−14 0
0 0 0 0 0 0 0 0 0 0 0 1.02E−03 0 −1.19E−07 0 3.99E−08 3.74E−12 0 −1.24E−12 0   

numerical 
solution

proposed
NN

The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping 
technique can be used to initialize the weights of a polynomial neural network

oral presentation at 
the European 

Conference on 
Artificial Intelligence

…

φ

φ 

Novel approach for constructing deep neural networks 
for beam dynamics
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Translating ODE of the pendulum into TM-PNN
1) transform ODE of mathematical pendulum to polynomial form 

2) represent the unknown solution as a Taylor map:

�′′ =− � sin(�)/� �′ =
�
��

 

�
�′

�1
�2

 =  

�′

−��1/�
�2�′

−�1�′

 = �1� + �2�2

�1 = sin(�), �2 = cos(�)

� = ���� +����   
[�]+ ����   

[�]

3) combine (1) and (2) and derive new system for ��:

�1
′ = �1�1,

�2
′ = �1�2 + �2�1   

[2],

�3
′ = �1�3 + 2�2�1 ⊗�2,
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Translating ODE of the pendulum into TM-PNN
1) transform ODE of mathematical pendulum to polynomial form 

2) represent the unknown solution as a Taylor map:

�′′ =− � sin(�)/� �′ =
�
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−�1�′

 = �1� + �2�2

�1 = sin(�), �2 = cos(�)

� = ���� +����   
[�]+ ����   

[�]

3) combine (1) and (2) and derive new system for ��:

�1 =      1  0.099  −7.64E−06  0
  0  1.000  −1.54E−04  0   

�2 =      0 0 0 0 0 0 −1.58E−05 0 6.11E−10 0
0 0 0 0 0 0 −4.80E−04 0 2.47E−08 0   

�3 =      0 0 0 0 0 0 0 0 0 0 0 2.46E−05 0 −2.28E−09 0 7.61E−10 5.87E−14 0 −1.95E−14 0
0 0 0 0 0 0 0 0 0 0 0 9.95E−04 0 −1.15E−07 0 3.84E−08 3.56E−12 0 −1.18E−12 0   

solving this system at once for predefined 
time interval result in weights suitable for 
arbitrary initial conditions

�1
′ = �1�1,

�2
′ = �1�2 + �2�1   

[2],

�3
′ = �1�3 + 2�2�1 ⊗�2,
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Taylor maps define a polynomial architecture
initialized with maps TM-PNN represents 
dynamics of the ODE with required level 
of accuracy for arbitrary inputs
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Taylor maps define a polynomial architecture
initialized with maps TM-PNN represents 
dynamics of the ODE with required level 
of accuracy for arbitrary inputs

libration

stable down 
position unstable top 

position

circulation
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02 Training

▪  From scratch: a general-purpose regression method for deterministic systems

▪  With ODE-based weights initialization

Physics-Based Neural Networks for Particle Accelerators | Andrei Ivanov



Page 16

Training from scratch: a general-purpose regression method
If dataset generated by a physical system then developed model can be applied for a general purpose 
regression problem without a prior knowledge about ODEs

UCI Machine Learning Repository:
• Airfoil Self-Noise Data Set: NASA data set, obtained from a series of aerodynamic and acoustic tests of two  and 

three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.
• Yacht Hydrodynamics Data Set: Delft data set, used to predict the hydrodynamic performance of sailing yachts  from 

dimensions and velocity.
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Training from scratch: a general-purpose regression method
If dataset generated by a physical system then developed model can be applied for a general purpose 
regression problem without a prior knowledge about ODEs
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Training with ODE-based initialized weights
Having an approximate knoweledge about the system in form of ODE

φ =− ω2 sinφ

one can build a TM-PNN with physical properties without training 
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Fine-tuning of the TM-PNN with measurements

The fine-tuning of the TM-PNN with one oscillation not only increases the 
accuracy of the prediction for the given training oscillation but also 
recovers the physical property of the real pendulum for unseen inputs.

one training 
trajectory

Prediction of the TM-PNN fine-tuned with one trajectory for unseen inputs:

partial and noisy 
measurements

and recover true dynamics by fine-tuning of the weights

real dumped 
pendulum
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Weights initialization for particle accelerators
Each magnet is defined by a system of ODE

Initialized NN accurately represents the parametric dependency of dynamics on 
magnet strength, such as the appearance of a third-integer resonance

During training, the symplectic condition can be used

For Hamiltonian systems representing single-particle beam dynamics, the symplectic property can be used. The 
Hamiltonian structure of each layer is preserved for all new inputs which has a large impact on generalization.

�1 =    
  �1

11    �1
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symplectic property 
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03 Application in particle accelerators

▪  Simulation of beam dynamics

▪  Data-driven model calibration (PETRAIII experiments)

▪  RL-enhanced control (simulated environment)
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Simulation of beam dynamics

PETRAIII: deep neural network with 1519 layers represents ideal lattice with fair accuracy 

▪ 2,3 km length with 1519 magnets        ▪ 210 horizontal and 194 vertical correctors        ▪ 246 BMPS
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Simulation of beam dynamics

Elegant NN in TensorFlow

PETRAIV cell
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Simulation of beam dynamics
PETRAIV cell

Elegant NN in TensorFlow

different grid search 
and numerical maps
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One-shot learning of PETRAIII in experiments

Beam threading

Tune recovering

1. All corrector magnets  are switched off
2. Beam is able to travel through only a part of the ring
3. Neural Network predicts an optimal control policy for beam propagation

1st iteration

3rd iteration

95% accuracy of the 
multi-turn prediction

beam oscillation in ideal lattice
beam oscillation in imperfect lattice

training NN with 
a single-turn 

measurements

no beam

no beamcorrected beam

1. Tune is the main multi-turn frequency of beam oscillation in the storage ring 
2. The affected magnets cause the tune change from the designed values.
3. Neural Network is trained with only a single-turn measurement and estimates tunes with 95% accuracy.
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RL-enhanced control
beam transmission: 2 actuators (correctors), 1 objective, sextupoles and apertures

nonlinear response 
concerning the random 
misalignments of magnets

corrector 1 corrector 1

co
rre

ct
or

 2
co

rre
ct

or
 2
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Numerical optimization
using traditional optimizers one can iteratively find out optimal corrector’s values
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Numerical optimization
using traditional optimizers one can iteratively find out optimal corrector’s values
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RL for control

NN is trained with ‘historical data’ and learns an optimal policy

Traditional RL agents

correctors

Observations (transmission rate and correctors)

random misalignments
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RL for control

It is hard to achieve meaningful results with black-box models

During each epoch NN is trained with simulated data for the given random misalignments and tries to 
maximize initial state (orange line). After max. 40 iterations the procedure begins again for new random 
misalignments.
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RL for control

To fix this issue ML methods provide possibility to tune hyper parameters of the NN

Traditional RL 
agents

correctors

Observations (transmission rate and )

random misalignments

Number 
of layers, 
learning 
rate, …
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RL for control

To fix this issue ML methods provide possibility to tune hyper parameters of the NN

looks like a convergence
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RL for control

To fix this issue ML methods provide possibility to tune hyper parameters of the NN

looks like a convergence no guarantee that NN worsk for 
new parameters
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RL for control enhanced by physics-based NN

Incorporate a priory knowledge in form of a trainable NN

ideal lattice
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RL for control enhanced by physics-based NN

Incorporate a priory knowledge in form of a trainable NN

correctors

ideal lattice

real lattice with random  
misalignments
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RL for control enhanced by physics-based NN

Incorporate a priory knowledge in form of a trainable NN

correctors

observations

ideal lattice

misalign
ments

RL agents
with traditional NN

real lattice with random  
misalignments
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RL agent recovers misalignments distribution from data and 
provides an optimal strategy
Similar to a traditional optimizer that utilizes knowledge from historical data and uses adaptive 
steps during objective maximization
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RL for control enhanced by physics-based NN

Incorporate a priory knowledge in form of trainable NN

correctors

observations

ideal lattice

hidden 
variables

RL agents
with traditional NN

real lattice with random  
misalignments

+
wrong magnet 

strengths

uncertainties known model variations
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RL agent + Taylor map-based NN approximates true system

Taylor maps are calculated for the ideal lattice, but true lattice consists of magnets with 
strengths reduced by 20%
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Results

01 Novel architecture of deep NN incorporating physical knowledge from ODEs

02 The NN is validated on both general-purpose regression tasks and specific accelerator problems 

03 RL-enhanced optimal control with physics incorporating 

Paper in European 
Conference on 

Artificial Intelligence
Paper in Physical

Review AB

Physics-Based Neural Networks for Particle Accelerators | Andrei Ivanov



Contact

Deutsches 
Elektronen-Synchrotron

www.desy.de

Andrei Ivanov
andrei.ivanov@desy.de

Thank you


