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Overview

01 Physics-inspired neural networks

» Related works and proposed neural architecture (TM-PNN)

» Detailed example of translating ODE for pendulum oscillation into TM-PNN

02 Training

* From scratch: a general-purpose regression method for deterministic systems
+  With ODE-based weights initialization

03 Application in particle accelerators

« Simulation of beam dynamics
» Data-driven model calibration (PETRAIIl experiments)

« RL-enhanced control (simulated environment)

HELMHOLTZ



01 Physics-inspired neural networks

Related works and proposed neural architecture (TM-PNN)

Detailed example of translating ODE for pendulum oscillation into TM-PNN
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Physics-inspired neural networks

several methods to incorporate physical knowledge into predictive model exist

- surrogate models: train a black-box model with simulated data
black-box

o _ _ training
(., ) simulation dataset ; g; ()
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Physics-inspired neural networks

several methods to incorporate physical knowledge into predictive model exist

» surrogate models: train a black-box model with simulated data
black-box

_ _ _ training
(., ) simulation dataset ; g; ()

= parametrize equation with NN or, oppositely, include equation into NN — =(, , ) — = (, )

e.g. Hamiltonian Neural Networks
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Physics-inspired neural networks

several methods to incorporate physical knowledge into predictive model exist

» surrogate models: train a black-box model with simulated data
black-box

_ _ _ training
(., ) simulation dataset ; g; ()

= parametrize equation with NN or, oppositely, include equation into NN — =(, , ) — = (, )
e.g. Hamiltonian Neural Networks /\
: : . : . ) ( +1 +1)
= implement a numerical scheme in NN basis
e.g. Neural ODE (requires numerical solvers) E ﬁ;
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Novel approach for constructing deep neural networks
for beam dynamics

with the following key features:
ECAl

oral presentation at

. . . . the European
= model fine-tuning with limited measurements Conference on

Artificial Intelligence

= accurate simulation of dynamics without training
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Novel approach for constructing deep neural networks
for beam dynamics

with the following key features:

ECAl

oral presentation at
the European
Conference on

Artificial Intelligence

= accurate simulation of dynamics without training

« model fine-tuning with limited measurements

The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping
technique can be used to initialize the weights of a polynomial neural network

Pendulum oscillation: ® =— w? sin@ 1 —  numerical

solution
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Novel approach for constructing deep neural networks
for beam dynamics

with the following key features:
ECAl

oral presentation at
. . . . the European
« model fine-tuning with limited measurements Conference on

Artificial Intelligence

= accurate simulation of dynamics without training

The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping
technique can be used to initialize the weights of a polynomial neural network

Pendulum oscillation: P =— w? sing | | | | | —  numerical
solution
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Novel approach for constructing deep neural networks
for beam dynamics

with the following key features:
ECAl

oral presentation at

. . . .. the European
« model fine-tuning with limited measurements Conference on

Artificial Intelligence

= accurate simulation of dynamics without training

The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping
technique can be used to initialize the weights of a polynomial neural network

Pendulum oscillation: P =— w? sing — 2yp
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Translating ODE of the pendulum into TM-PNN

1) transform ODE of mathematical pendulum to polynomial form

"=— sin( )/ < > . _ — 1/ _ L+, 2
L1=sin( ), »=cos( ) 1 2
-1
S T

2) represent the unknown solution as a Taylor map: ~—

3) combine (1) and (2) and derive new system for

11— 1 1

' [2]

2= 1 2%t 2 1,

3= 1 3+2 5 1 2,
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Translating ODE of the pendulum into TM-PNN

1) transform ODE of mathematical pendulum to polynomial form

“=— sin( )/ < > . _ — 1/ _ + .2
p =sin( ), 2 =cos( ) 1 2

2) represent the unknown solution as a Taylor map: ~—

3) combine (1) and (2) and derive new system for

-

1 0.099 —7.64E—06 O

1— 1 1 solving this system at once for predefined 1= 51000 —154E—04 0
2) time interval result in weights suitable for ' '
2= 1 2% 2 1, arbitrary initial conditions _ 000000-158E—-0506.11E—100
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Taylor maps define a polynomial architecture

initialized with maps TM-PNN represents -
dynamics of the ODE with required level 0p—
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Taylor maps define a polynomial architecture

@4 P Pyg Py
initialized with maps TM-PNN represents o L L L
dynamics of the ODE with required level o M M| M| ML
of accuracy for arbitrary inputs ; - - ;
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02 Training

From scratch: a general-purpose regression method for deterministic systems

With ODE-based weights initialization
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Training from scratch: a general-purpose regression method

If dataset generated by a physical system then developed model can be applied for a general purpose
regression problem without a prior knowledge about ODEs

fiAxy,x0,....0,} = v.

UCI Machine Learning Repository:

» Airfoil Self-Noise Data Set: NASA data set, obtained from a series of aerodynamic and acoustic tests of two and
three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.

* Yacht Hydrodynamics Data Set: Delft data set, used to predict the hydrodynamic performance of sailing yachts from
dimensions and velocity.

True response Interpolation Extrapolation

1.0 7

0.8 4

0.6 7

X2

0.4 1

0.2 1

0.0 -
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 10

x1 X1
DESY. Physics-Based Neural Networks for Particle Accelerators | Andrei lvanov Page 16




Training from scratch: a general-purpose regression method

If dataset generated by a physical system then developed model can be applied for a general purpose
regression problem without a prior knowledge about ODEs

INTERPOLATION

EXTRAPOLATION

METHODS RMSE R2 RMSE R2
AIRFOIL SELF-NOISE DATASET (UCI, NASA)
RIDGE REGRESSION  0.128 0.122 0.126 0.195
POLYNOMIAL REGR. 0.119 0.461 0.126 0.369
PNN 0.121 0.208 0.119 0.006
FM 0.134 < () 0.217 <0
GPR 0.079 0.761 0.130 0.557
SVR 0.086 0.682 0.144 <0
XGBREGRESSOR 0.045 0.933 0.191 0.569
CATBOOSTREGR. 0.046 0.937 0.215 < 0
DNN 0.042 0.942 0.159 0.616
NODE 0.062 0.874 0.080 0.792
PROPOSED MODEL 0.077 0.811 0.106 0.733
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Training with ODE-based initialized weights

Having an approximate knoweledge about the system in form of ODE

G =— w? sing

one can build a TM-PNN with physical properties without training
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Fine-tuning of the TM-PNN with measurements

and recover true dynamics by fine-tuning of the weights

real dumped
pendulum
P =
©
— s
one training <
trajectory <
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—— initial TM-PNN
training data
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Prediction of the TM-PNN fine-tuned with one trajectory for unseen inputs:
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Angle ¢ (rad)
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Time (s)

—— Real data ¢(0)=0.09, training
Real data ¢(0)=-0.17, unseen
--- Real data ¢(0)=0.27, unseen

—— TM-PNN ¢(0)=0.09, training

—— TM-PNN ¢(0)=-0.17, unseen
—— TM-PNN ¢(0)=0.27, unseen

The fine-tuning of the TM-PNN with one oscillation not only increases the
accuracy of the prediction for the given training oscillation but also
recovers the physical property of the real pendulum for unseen inputs.
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Weights initialization for particle accelerators

Each magnet is defined by a system of ODE

qf d b d gd sd qd d b d aof sf

0 1 Length, m

Initialized NN accurately represents the parametric dependency of dynamics on
magnet strength, such as the appearance of a third-integer resonance

k
=

|
quadrupole " drift B

During training, the symplectic condition can be used

For Hamiltonian systems representing single-particle beam dynamics, the symplectic property can be used. The
Hamiltonian structure of each layer is preserved for all new inputs which has a large impact on generalization.

12 12 lecti rt wlw? —wiw?! —1=0
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03 Application in particle accelerators

Simulation of beam dynamics
Data-driven model calibration (PETRAIII experiments)

RL-enhanced control (simulated environment)
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Simulation of beam dynamics

PETRAIII: deep neural network with 1519 layers represents ideal lattice with fair accuracy

= 2,3 km length with 1519 magnets = 210 horizontal and 194 vertical correctors - 246 BMPS

BPM, : (X4, Y1) BPM 3,6 : (X1518, Y1518) .| — CPU:Intel Core i5-8500T 1FJ
0 10 TensorFlow CPU: Xeon(R) 6140 90GB
@ ;43| — Tensorflow GPU: Tesla P100 16GB TensorFlow
Xo— - . > X E
+
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Vol | — by ;
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Simulation of beam dynamics

PETRAIV celi
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One-shot learning of PETRAIIl in experiments

Beam threading

1. All corrector magnets are switched off

2. Beam is able to travel through only a part of the ring

= [rm)

3. Neural Network predicts an optimal control policy for beam propagation

Tune recovering

 (m)

1. Tune is the main multi-turn frequency of beam oscillation in the storage ring
2. The affected magnets cause the tune change from the designed values.
3. Neural Network is trained with only a single-turn measurement and estimates tunes with 95% accuracy.
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RL-enhanced control

| BN cor E sexi E quad

I B B

nonlinear response
concerning the random
misalignments of magnets

corrector 2

corrector 1 corrector 1
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Numerical optimization
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Numerical optimization
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RL for control

NN is trained with ‘historical data’ and learns an optimal policy

Traditional RL agents

correctors

random misalignments

l
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||
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RL for control

It is hard to achieve meaningful results with black-box models

60
—— final reward

**t e initial reward

Reward

Vv

/J\ 10

T T T T T
75 100 125 150 175 200
Epochs

T
L
o
number of iterations

During each epoch NN is trained with simulated data for the given random misalignments and tries to

maximize initial state (orange line). After max. 40 iterations the procedure begins again for new random
misalignments.
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RL for control

random misalignments

Traditional RL
agents l
Number
of layers, - correctors | == =)
learning o 0N - L
rate, ... o 0l o ’ ’ ‘e C ?

Observations (transmission rate and )
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RL for control

To fix this issue ML methods provide possibility to tune hyper parameters of the NN
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RL for control

To fix this issue ML methods provide possibility to tune hyper parameters of the NN
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RL for control enhanced by physics-based NN

Incorporate a priory knowledge in form of a trainable NN

ideal lattice

| I- cor M sext Em quad

==
tj}g % : @ %.j_%% E
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RL for control enhanced by physics-based NN

real lattice with random
misalignments

ideal lattice
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RL for control enhanced by physics-based NN

real lattice with random

misalignments
ideal lattice
RL agents L T 5 =l L 1”5 +— |
with traditional NN a j o : ” 2 Cem :
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RL agent recovers misalignments distribution from data and
provides an optimal strategy

Similar to a traditional optimizer that utilizes knowledge from historical data and uses adaptive
steps during objective maximization
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RL for control enhanced by physics-based NN

Incorporate a priory knowledge in form of trainable NN

ideal lattice real lattice with random

RL agents

NN cor . sext E quad misalignments
[ | R . | u lI +
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RL agent + Taylor map-based NN approximates true system

Taylor maps are calculated for the ideal lattice, but true lattice consists of magnets with
strengths reduced by 20%
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Results ECAl o APs

physics
Paper in European . .
Conference on Paper in Physical
Avrtificial Intelligence Review AB

01 Novel architecture of deep NN incorporating physical knowledge from ODEs

02 The NN is validated on both general-purpose regression tasks and specific accelerator problems

03 RL-enhanced optimal control with physics incorporating
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Contact
DESY. Deutsches Andrei lvanov
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