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Definition

e

A definition: Systematics are whatever you still have to do after you have
your initial result (but your time is already running out...)

A real definition:
Measurement uncertainty due to uncertainties on external input or
due to uncertainties not due to the statistics of your data.

Remarks:

* The term systematic ,,uncertainty” is preferred, as your measurement
hopefully does not contain errors....

* Often no clear recipies how to determine the systematic uncertainty.
-> Needs experience from own analyses and closely following

(or reading about the details of) other analyses

* Sometimes the value assigned is based on an ,educated guess”

-> Needs ,gut feelings” based on experience

This lecture cannot provide experience,
but hopefully some ideas, strategies...
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__Examples of systematic uncertainties

Qi

* Background

* Acceptance

* Efficiencies

* Detector resolution

* Detector calibration (energy scales)

* MC simulation

* Theoretical models/input

* External experimental parameters (branching ratio,...)
* ,External” parameters (lumi, ....)

* Varying exp. conditions (temperature, air pressure, ...)
* You (the biased experimentalist)

* ....many more....

* And finally....the unknowns
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Some of the (later) results biased by earlier results and thus ,similar®?

PDG: ,Older data are discarded in favor of newer data when it is felt that
the newer data have smaller systematic errors, or have more checks on
systematic errors, or have made corrections unknown at the time of the

older experiments, or simply have much smaller errors.”
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Outline

Qi

* Definition (done)
* The (sometimes) fine line between
statistical and systematic uncertainties

* Some examples:
— Avoiding systematic uncertainties
— Detecting systematic uncertainties
— Assigning systematic uncertainties
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§tatistica| or systematic uncertainty

e

Example: N — NBG
Your W->1v analysis: O = )
Acc®efficiency L

he efficiency: Statistical or systematic uncertainty?
1) In the beginning, you might have to get the efficiency from MC

-> systematic uncertainty
2) More data arrives: Your friendly colleague gives you a first lepton efficiency
based on data from his Z studies
(cross section of W order of magnitude bigger than cross section of Z)
-> not truely ,external® parameter (correlated) -> assign as statistical uncertainty
3) Some decent data set available:
The efficiency from the Z studies by now has a small statistical uncertainty:
stat. << sys. unc. inherent in your colleagues method or/and
stat. << sys. unc. arising from the fact that his efficiency maybe does not
neccessarily apply exactly to your case
-> systematic uncertainty
4) Somewhere in between 2) and 3) you have to consider a systematic and
a statistical component from your efficiency to your overall uncertainty
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_Avoiding systematic uncertainties

* Biased experimentalist
- Don‘t tune your cuts by looking at your signal region
- Tune cuts in background region, on different channel, on MC, ....

- ,Blind analysis®: Part of data is covered (or modified) until all the
analysis is fixed

* Acceptance, MC, Background....

- Is your cut really needed or does it have large overlap with other
cuts? Fewer cuts are usually better....

- Don't use cuts that are not well modeled in MC (if relying on MC),
usually better to live with more but well known background
(e.g., acceptance from MC for cross section measurement)
* The unknowns
- Find the unknowns by talking to (more experienced) colleagues
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e

* Cern 1967: Report of narrow dip (6 standard
deviations) in the A2 resonance

* Next: Other experiments also report dip (< 30 )
(suspicion: some that were also looking but
did not see anything did not report on it?)

* Later: dip disappears with more data

EVENTS / SMeV

What has happened:

* Adip in an early run (statistical fluctuation)
was noticed and suspected to be real

* Data was looked at as they came in...and was
checked for problems much more
carefully/strict when no dip showed up
(if you look long enough you will (always)
find a problem, especially in early LHC running!)

5501

SO0

L00-

Example: Biased experimentalist

Z WO B
Pl S0.2 %,

2C0H B W OR
DOUBLE POLE
/..f"lb{x’}z 40 =,

Initial statistical fluctuation became a significant false discovery!
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Outlier/data rejection: The textbook

s

* Chauvenet's criterion: Reject data point if:
probability x N (number of data points) < 0.5

* Example: 8 values taken with one being 2o 6% probability)
away from the mean

->0.05x 8 =0.4 -> reject

In other words: up to 10 events -> reject outside 2 sigma
* Only works for gaussian distribution. One often has tails...
* Only good for the case of exactly one outlier...
* Probablility < 0.5 x 1/N ....why 0.5?

* Having a prescription does not mean that one can blindly
follow it ....

* No generally applicable/valid prescription for data rejection.
* This textbook example is not commonly used
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_____Outlier/Data rejection: The reality

* Quality of early LHC data will be questionable and be
taken under rapidly changing conditions

-> Will have to reject data, but be careful
* Try to understand why the data was an outlier
* Have external reasons for cutting data

* Pay attenion: Dou you only start searching for
problems because you have a result you did not
expect? -> self-biased experimentalist

* Dont let your result ,make"” the (cut) selection ->
very much self-biased experimentalist

Terascale Statistics School Frank Ellinghaus 10



Detecting systematic uncertainties

Example: Data-MC comparison -> look at all possible variables

good bad
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Most problems can be seen by eye

Note: MC (no stat. unc. shown) should always have negligible statistical
uncertainty compared to the one from data.
-> An uncertainty should never arise from limited MC statistics.
-> Generate at least 10 times more MC data than you have real data.
..... likely difficult at LHC......
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Divide data by MC

e
good bad
o 4Ff o 4Ff
= S S o/ ndf 1561716 | . = I o/ ndi 38.09/16| . ...
® 350 + pO 0.9442+0.0615 = 3.5 g p0 0.8773:0.0601
g g | g = K
2.5 ;_ _"_ ............ 2.5 ;_ ...................................................................................................
5 ? ..... _.._+... ..................................................................................... 5 ?_.._ ........................................................................................................
T e —— 1.5 ol | g —
ceelll o WG S & R . ll ......... o= 4T Lo T
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* Deviations better visible when plotting data/MC
* Significance of disagreement:
-> Fit a constant line, check »? /dof

Terascale Statistics School Frank Ellinghaus
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Stability of result

e

Result stable over time?

- compare results for different time periods, e.g., before and
after shutdown, or change of beam conditions, or change of
detector setup, day and night (temperature), nice weather

versus bad weather (air pressure), ...
* Results stable in different detector areas (if symmetric) ?
- upper half versus lower half?
- forward versus backward (if no physics reason)?
* Result stable using different methods?
- when you have two methods that should give the same
result you should do them both
* Result stable as function of analysis variables? ->

Terascale Statistics School Frank Ellinghaus 13



__Example: CP violation @NA48

e

Double ratio of decay widths: F

P Nk, n'n) I (K, m'm) ! Indf = 27/19

MKy n'n’) T (K m'm) | . |
Analysis in bins of kaon energy: 4 A
-> Disagreement at the edges. 95 |
No reason for this behavior found.

How bad is it? e snerayEen

> ¥ [ DOF =27/19 ....and how bad is that?

Rough estimate: 0 ... .. ion ng,s 62->130 effect

Better estimate: Probability (27,19) = 10,5 % [ Root: TMath::Prob(27,19) ]

Not really unlikely to be statistical fluctuation if it weren‘t the outermost guys....

Terascale Statistics School Frank Ellinghaus 14
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How can one check?

How to check...?

-> Enlarge test region if possible...
-> Additional bins okay
-> no systematic uncertainty assigned

Hypothetical question:

If it had looked like that ->
...Now you have to understand the effect

Then:

Did you understand it -> Can you correct for it?

If not, do one of the following:

* Discard outer bins if independent information

justifies this.

* Last resort: Determine systematic uncertainty.

Terascale Statistics School
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HowTo assign systematic uncertainties

e

Simplest case:
Uncertainty (standard deviation) on parameter x (branching ratio, ...) is known.

->Vary xby O, ->resultvariesby O

result

Still easy:
Possible range for input parameter x (min. x and max. x) is known.

-> Assume uniform probability over full range (if reasonable).

1 :
>0 =——(x_. —x_. ) 03(x 0.0

J12

(,Gain“ of 60% compared to naive 0, =0.5(x,,, —x,..))

max xmin )

Example: You measure an asymmetry A = (B-C) / (B+C). The asymmetry is due
to the asymmetry from your signal and your background process:

Ameas = f;ig ASig t fBGABG

In case you have no idea about the background
asymmetry, it still is bound to [-1,1].

Terascale Statistics School Frank Ellinghaus 16



Cut variations:

s

_ut variations commonly used to check stability of result.
But: Difficult to learn something from the result!

Usually not a good way to determine systematic uncertainty

T

'WO possibilities:

result

|. Result is stable -> good, done .
. Resultisnotstabe | | 1 | 1
-> will not tell you why {
-> cannot just assign sys. unc. +
-> |ook at underlying distributions
i —
default tighter cut

In most cases systematic uncertainty can only be assigend if reason for
variation is ,understood".

(but if reason understood there might be better ways than assigning sys. unc.)

But first, how to work with cut variations ->

Terascale Statistics School Frank Ellinghaus 17



_ Correlated Data sets

e

Cut variations usually lead to fully correlated data sets:

Default cut: sample Awithresult X, O,

Tighter cut: sample B, fully contained in A, result  x, O,
-> correlated errors, i.e., stat. unc. not meaningful

-> Significance of difference?

=» Consider sample C = Aw/o B

result
—

Use standard prescription for averaging
results (weighted average): | } _________________________________
2 2
_ _ X 1 _xz/0;,+x./0¢,
X=Xy = 2 / 2 2 2
;05 O /o, +1/0,
| |
o =0’ =1/ L 1 CltA c|tB
X - - u u analysis
* ! i 01'2 1/ 01}23 t1/0 (2: {detault) variable
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Uncorrelated error
s

a1 I 1
* 1o +l/al g, o o}
Stat. unc.

meaningful
_x, /0, +x./0;

x pu—
T 1/ar+1/a} \
_ xA/O-fl _XB/Ué

" Yoi-Vo;

Significance of the difference:
-X,

X, —Xp
2 2
«/0 +0; \/JB—O'A

2 _ 2
uncorrelated _| O-B O-A |

Terascale Statistics School Frank Ellinghaus

result

result

________ *

® Hypothetical

sample C
| |
—
Cut A CutB analysis
{default) variable
Uncorrelated
error
g2-g*
o
—
Cut A CutB analysis
{default) variable
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A useful table

e
| . A
. A B
Independent Completely Correlated Partially Correlated
llllll |'T.I|' _III.I |'T.I|' .Illll rT.Ir
f " 9 . . -'II 9 9 . . 'III ¥ ¥ Tj Tj
Ey— Ey Vo1t g Ey- Eg V74 75 Ey— Eg lo% +0g g-A°B '.}r s
\,' Tang
| | L‘H 1 J’.',‘_l J":lr{ 1 / 1 L‘H 1
Vot oy vV 00y ;:.rﬁ o B,TT},T;{
\," Tins
h L_l I."I i | i h Jr,_l II.'II rT:')1 r'J"ff 2 2 h h II."I r'J'i'Jl | rTf{ 2 rT:')erff
Ly !”\« A By Ey o \, Ey Eyt EaEy * Eg Ey \ By By EiBEyol
Lara De Nardo, HERMES internal note
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Now look at the cut variations again

s

Using the uncorrelated errors we can now

judge on the significance of the difference.

result

Significance of difference at most 10 2=|
-> ysually no sys. unc. should be applied @
Don‘t be conservative (in order to hide
possibly undetected other issues?)

st
or defa ut

tighter

|

rrrrrr

looser
—

default

_...
selection cut

result

Impossible to assign systematic uncertainty
-> Effect has to be understood
-> check underlying distributions

tighter

|

looser
—

default

Terascale Statistics School Frank Ellinghaus
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More possible scenarios
e

Variation should be understood:
-> check underlying distributions
-> what happens for tighter/looser cuts? _+__+_

....try hard...... ++—i— ...............
....harder

...If clueless at the end of the day soner
-> variation ~ systematic uncertainty

looser
-—

result
_b.

| E—
. | >
Not nice: sys. unc. ~ stat. unc. detauit

selection cut
-> |arge contribution to overall uncertainty

result
—-

+_._+ ...............
systematic uncertainty << statistical uncertainty,
-> don‘t try too hard if you have bigger fish to fry... | |

tighter looser
-

—

Same as above applies, but: _+_ |

—
default selection cut
Terascale Statistics School Frank Ellinghaus
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Cut Variations: Examples

s
Tricky: can be statistical fluctuation or % T
systematic effect )
-> look at underlying distributions +_+_+
-> check with even looser/tighter cuts = 1; ————————————— e s
> . |
-> |f you find nothing (else) suspicious,
be bold -> no systematic uncertainty. b | tooser
In case of doubt -> variation ~ sys. unc. ot —»
e selection cut
Summary:

* Cut variations are usually only useful to check the stability of your result

* When using cut variations, pay attention to correlated data sets and
calculate significance of difference

* If your result is not stable, find the reason...and don't just assign the
difference as systematics!
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Small statistics

e

Data-MC comparison with small statistics:
¢ Systematic differences can be hidden by stat. uncertainties

* Multidimensional (as function of correlated variables at the same
time) comparison not possible, also no fine binning

« Statistical fluctuation can fake systematic effects

Can you enlarge the data sample?
* Release cuts (-> enlarge background)
* Look at different (control) channel -> next example

In_general, be careful:

* Is the additional data representative (different kinematic region, channel, ...) ?

 Extrapolating to your area of interest might involve additional uncertainties,
especially if your signal sits in a tail.....

Terascale Statistics School Frank Ellinghaus 24



Data-MC comparison

Example: Rare decay: K* r1me’vy

Electron CM energy > Electron CM energy - Data/MC
350 y . A \ g'?rr'ss 4£§ E ries 51407
AR ey 05110801 1.8 e Asrocor
A A g uDFLW 85.00 UDFLW 0.85¢3
300 AT : [ ovew  ze00 1.6 ovELw sz
oo . ° 1
250 A B 1.4
P q;
AE AlA 22 *}*‘%
200 :

150 | - + v ; } }%} }%§*§ %%%@*&@% % 2 §% e

100 i : 0.6
A A
A Data . 0.4
50 — MC
AdA- A
A 0.2
a |
.04 0.06 0.08 0.1 0.1z 014 016 0.18 02 D.04 0.06 0.08 0.1 0.1z 0.14 0.16 0.18 0.2
GeV GeV

¥> [ DOF = 31.5/29 is okay, but obvious disagreement beyond 0.16 GeV

Unable to find source for this ->
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Estimate systematic uncertainty

.estimate systematic uncertainty:

350 |

300

250

200

150

100

50

%04 0.06 0.08 0.1 0.1z 0.14 0.I6 0.I8 0.2

Terascale Statistics School

Electron CM energy

LB 202|
H Errtries 48306
H LA Mear o0.1199
- é‘ . H AMS 0.31 19501
LA A UDFLW 85.00
; A_-A-E . ; OVFLW 3.000 |
,:5.
s
A
A
A ~ Data
—— MC
AtA-

GeV

Estimate systematic uncertainty:

* 10 % of all data above 0.16 GeV

2 Electron CM energy - Data/MC
D
1.8 it %5 e
PMS o. 19E-071
UDFLW 0.8545
OVFLW . 026
e z ek, T2
1.4
1.2 o TrItI: 2 B e
. % % r 3| J. J. 20%
& } }’%&g §+§1§+§*§1§r§* *%*% Tk
0.8 %
0.6
0.4
0.2

%04 0.06 0.08 0.1 0.12 0.14 0.16 0.1I8 02V
Ge

* 20 % more data than MC above 0.16 GeV
-> Systematic uncertainty of +/- 2% on decay rate
-> Largest single uncertainty in analysis

-> Try to do better...
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. ook at control channel
G

Electron CM energy 2 Electron CM energy - Data/MC
330 | S = +es0e
; LA Mean o0.1199 1.8
A A : Aus 03119501
300 FEY | ovew 5o 1.6

(.81

250 J& ; .4 %
+ + 200 1l AA 1z T, 2
K 7T0 e Vy : & x } }*}:}%ﬁ%@é@@*&ﬂ@%*H*.y}‘ 1k

"l

150 A > 0.8 5 g8
T A
100 | 0.6
Al A A
A Data : 0.4
— MC
50 T n
- s 0.2
= | S
%.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 %.04 0.06 0.08 0.1 0.1z 0.14 0.16 0.18 0.2
GeV GeV
Electron CM - Data/MC
x 102 Electron CM energy 2 = e e o e 5]
Entries 7212330
1800 1.8 ey e
i Sveiw res
1600 - m
| A0 = 0.9997 |
1400 1.4
1200 1.2
+ + FARATAHATAATAL AAA,
F ; e V 1000 I A HAFAGAFATOFAFATAAAIAADADALA AT AFATAFOFAT
800 0.8
600 0.6
400 0.4
200 0.2
1 1
b.04 0.06 0.08 0.1 0.1z 014 0.16 0.18 0.2 %.04 0.06 0.08 0.1 0.1z 0.1+4 0.16 0.18 0.'2
GeV GeV

-> No discrepancy in more abundant control channel
-> No estimation of systematics this way, but does not seem to be a detector problem!
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PDFs: They even come with a recipie!

e
PDFs (Parton Distribution Functions):

QCD-Fits using a certain paramaterization and various boundary conditions

and assumptions

PDF iS universal! 3 —— — .(a] S .(.h)....
- '::'Z 08— .
=» Calculate the pp cross section WING w7\ B
Q 0.4 T — _--..’/’; S v
\ i: ( ?IC‘I_I_-- (ch ; l;d)
_} P ’fa | @.,_ '. P ‘__. 0.8 \\\ ] \ )
: . -1 0.6 “m.____f____ . \\\_\‘ xD %
@D 0 N\ S ;
/.J E | —7 ‘d\ ) P RN ETIT] B EHHM‘H—._ E
1 2 A A (e 10" |u"-'- 3 m"q N xl
Op  y PAx)  pdfy(xp)  Op | o
. ] ] N model ancerainis
Unsicherheiten in den PDFs 2 N\ | FeoHBCOMSdn
- - - al - 1 parton distribution
Unsicherheiten bei Vorhersagen (z.B. LHC)
U=u+c= u, D=d+s= d
Fits to a single data set can ,easily” take into
account the stat. and sys. uncertainties of that measurement...
Frank Ellinghaus 28
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- - Data set LO NLO NNLO
a a | n g O a | S BCDMS pip Iy [32] 165 /153 | 182,163 170 / 163
BCDMS pd F; [102 162 /142 | 190/ 151 188 / 151
I NMC up Fy [33] B7/15 | 121/13 | 115712
NMC pd F; [33] 120 /115 | 102123 93 / 123
e NMC pn/ up [ll 131 /137 130 / 148 135 [ 148
MSTW’ arXIV0901 0002 E665 pp Fy [104] 59 /53 57 / 53 63 /53
E665 ud Fy [104] 19 / 53 53 / 53 63 / 53
suc;p F, [105, 106] 24 /18 30 / 37 31 /37
SLAC ed Fy [105, 106] 12 /18 30 / 38 2% / 38
i i NMC/BCDMS/SLAC F; [32-34] | 28 / 24 38 / 31 32 /31
MOSt fits a_re ”g“IObaI o E866/NuSea pp DY [107] 20 /181 | 28/ 18 | 237/ 184
l.e., they fit ,all* the available data = E866/NuSea pd/pp DY [108] 14 /15 14 /15 14 /15
NuTeV vN Fy [37] /10 /53 16 /53
CHORUS vN F; [3§] 91 / 37 2% / 42 20 / 42
NuTeV vN zFy [37] 62 / 45 10 / 45 34 /45
CHORUS vN zF; [3§ 44/33 31 /33 2% / 33
CCFR vN — puX [30] 63 / 86 66 / 86 69 / 86
. - NuTeV vN — upX [30] 44/ 40 30 / 40 45 / 40
Data sets are from colliders and fixed target, - 7 XCB a8 78 8
; ; H1 MB 97 £*p NC [109] 16 / 64 12 / 64 51 / 64
from ep, pp, eA, v A, ... , 1.e., their probed H1 low @ 96-97 e*p NC [109] 54 / 80 44 / 80 45 [ 80
X-ran nd their sensitivitv t rtain HI high Q208 09 p NC [110] | 134/126 | 12212 124 / 126
a ge. and e sens y. 0 a cerla _ H1 high 2 99-00 e*p NC [35] 153 /147 | 131/ 147 133 / 147
parton is very different. Their systematic 7EUS SV 08 etp NC [111] 3 / 30 35 / 30 35 / 30
.. : ) ZEUS 96 Jrf-;. NC [112] 118 / 144 86 / 144 86 / 144
uncertainties are also not necessarily derived  zeusos 9 .p e 113 61/ 92 54 / 92 54 / 9
. . ZEUS 99-00 e*p NC [114] 75 /90 63 / 90 65 / 90
In a consistent way...... H1 99-00 ¢*p CC [35] 98 / 28 29 / 98 2 / 28
ZEUS 99-00 e*p CC [36] 36 / 30 38 / 30 37 /30
H1/ZEUS ep FSarm [41-47] 110 / 83 107 / 83 05 / 83
H1 99-00 etp incl. jets [59] 109 / 24 19 /24
_ ZEUS 96-97 e¥p incl. jets [57] %8 /30 30 / 30
=> Until recently, only the result (central value) _zeus 9500 e*p incl jets 58 102/30 | 17/30
i . ) DO I pp incl. jets [56] 103 /110 | 114 /110 123 / 110
of the fit was available and fed into your CDF II pp incl. jets [54 43/76 | 56/76 54 / 76
. CDF II W — fv asym. [48] 50 /22 20 /22 30 [ 22
favourite MC generator ..... DO I W — fv asym. [40] 23 /10 25 / 10 25 / 10
DO I Z rap. [53] 25 | 28 19/ 28 17 / 28
CDF 11 Z rap. [52] 52 / 29 49 /29 50 / 20
All data sets 3066 / 2508 | 2543 / 2600 | 2480 / 2615
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The parametrization

e
LUyl T, Qé = A, 1??1(]- - I:}'T}z (1 + €y ‘\,/T‘|‘ ﬁ,‘"uI}-.
rd,(z,Q2) = Agz™(1 — 2 (1 4+ €4 \/x + 74 2).

g(z,Qp) = Agr(1—2)" (14 e, VT + 7, 2) + Ay 2 (1 — 2)",
r(s+3)(z,Qf) = Arz™ (1 —2)™ (1 + es VT +752),
z(s - 5)(z, Q) = A_ 2’ (1 - 2)- (1 - z/x),

All input parameters are allowed to vary.

Unfortunately highly correlated and even partially
redundant (,full® compensation possible).

= MSTW uses subset of 20 (sufficiently independent) parameters,
others fixed at best values.

Terascale Statistics School Frank Ellinghaus



e

The

Parameter

LO

NLO

NNLO

113
as(C)

as(M3)

0.68183
0.13939

040128
0.12018

0.45077
011707

Au 1.4335 0.25871 0.22250
m 04522 RO | 0.20065 hon 025871 Tho
m 300 Thgn | 3242 Top 33620 0
€ gy U g0p0n 110 1433 34
89924 30,687 38 500
T 5000 BRES 703
T 071978 Tl | 0.96500 ! i

-
&
e

2.0835

~4.3654 133

7ATI0

27003
—3.5011

6.0342

fneeg  HL
10839 o
g e O
£.7803 )
-3.6387 104

5.2577

As

s
ES

e

059964 T

—0.16276

58801

-28012 T

16.865

0.31620 T

-0.21515

9ot
26022 7

J0.785

06042 7]
-0.11912
5y +0. 25
!].-ll:l\i e
26T Ty

15.065

Jydr Az, Q%)

n.ooto3 A

8.9413
18760

g4T03 120

—16.507

0.087673  Than

51084

eTaiil | +1,
1.8691

L1600 Too

—50.280

0078167 TRHE
16.244
2041
b.7640 T
—36.000

0.0012216

10R0G

D424 T

~1.1168

042776 100

J2860

3.4055
—012178 59
20778 LA
~2.3210
1.0213
~1.6180
—02300g  ThU
o 3

0.10302 T
3242
-0.011523

10.285

noi7
23
i

0000
; I'GEII.:-

0.047915
0.7466
-0.011629

11261 5

EE TUULY

01065 oo
08680 T
—0.0093692 T

0.5783

] 0.017414 0.016050 01.018556
r —0.39484 —0.57631 —0.R0834
ry -1.0719 0.81878 12660
r3 ~0.28973 —0.083208 0.15008
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PDF error sets

Combinations of 20 parameters are expressed in
eigenvectors and eigenvalues of covariance matrix
=» Eigenvectors are orthogonal
=>» Pairs (,up-down variations”) of eigenvector PDF
sets span the hypersphere with a radius T
corresponding to the allowed tolerance
for required confidence interval,

e.g., for a 68% confidence level | TZAXX <]

The recipie:

The (asymmetric) uncertainty on a quantity

(e.g., cross section) is derived by separately

adding all (20 in case of MSTW) ,up® and all ,down*
fluctuations on that quantity in quadrature
(orthogonal eigenvectors).

If a pair of eigenvector PDF sets causes the
quantitiy to fluctuate in one direction add once

the maximum and once zero = see example
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Example: Acceptance

e

Variation of PDF results in variation in derived acceptance
— Study impact of PDF variation around best fit value

MSTW2008/CTEQ66 provide set of 40/44 variations of mean PDF
(error sets)

Calculate 40/44 acceptances using error sets

Add up deviations (up and down separately) from mean acceptance in
quadrature to get (asymmetric) systematic uncertainty

Technically done via event reweighting (“LHAPDF"):
— weight (w) for each event with respect to central value (CV) PDF

_ PDF_.(x,,0",id\)[(PDF,.(x,0",id")
PDF_,(x,,0Q",id\)(PDF_., (x.,0Q",id ")

W

id1,id2: quark flavours, x1,x2: Bjorken-x, Q2: scale

Terascale Statistics School Frank Ellinghaus
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e

Result and warnings

I
©
(¢ ]

H
(o]

Acceptance [%]

CTEQ NLO error set fed in PYTHIA:
Acceptance

47.5

47

= (for Z->ee in ATLAS with some cuts

on the eta and pT of the electrons)
is47.6+0.8-0.9 %

_LIIIIIIIIIIIIIIIIIIII

46.5 |

AN Y Y I I Y N
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

EV number

Warning, these uncertainties usually do not take into account:
- Form of input Parametrization

- Higher order QCD
- Higher order EW

- Nuclear corrections for neutrino data

- Choice of data sets

Terascale Statistics School
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Minimize uncertainties ,All in one"

e

If systematic uncertainties are not correlated you can (usually) add them in quadrature.
If they are/might be correlated you have to add them linearly =» can get large, while

in fact they might partially cancel.

=> Try to address uncertainties that might be correlated ,All in one” shot.

! y — ! y
X T X X 7 X
L/
Iiz ]Z.z ] /.1
e e mm e mmemmmmmssemmmsmemmmeme——— =s S ..;,.-r.': ....................................... -"..r‘ .................................
e € e e
B

Example misalignment:
- misaligned (forward) spectrometer

- misaligned beam
- effect of transverse magnetic field (holding field for transverse target) on incoming

and scattered electron

If possible: Have all effects modeled in the same MC and vary them all at the same time.
(Indeed, some cancellations were found (HERMES@DESY)

Terascale Statistics School Frank Ellinghaus 34



Peak extraction (PHENIX@BNL)

s

n> vy

2<p;<3GeVic 3<p;<4GeVic 4<p;<5GCeVlc 5<p;<6GCeVic

M, (MeV) M, (MeV) M, (MeV) M, (MeV)

Signal/Background extraction:

Fit to Signal+Background

Sideband

Same charge backgound (not in this case)

Mixed background (usually for large combinatorial background, e.g., high
multiplicity in heavy ion collisions

Have an excellent MC descripton? Get it from MC directly....
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Many bins in pT with different shapes

2-2.5 GeV 2.5-3 Ge

One
Method
To
Rule
Them
All?
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Peak extraction: Sideband/ Fit-Method

i

Cross section ratio eta : Sideband-method/ Fit-method

o TN NV N U VO e

These are not automatically your B
SyStematiC uncertainties: L | ............. ............. ............. ............. ...............................................
 Sideband method needs somewhat 15 . T I B

linear background, not true in : . ________ T

small pT bins 0 U S T Rl N T O O O
* The fits are maybe not good B "

(enough) in large pT region 08 A AR S -

1 i 1 1 1 i 1 1 1 : 1 1 1 1 1 1 i 1 1 1 i 1 1 1 : 1 1 1 : 1 1 1 | 1 1 1 I
2 4 6 8 10 12 14 16 18 20
Py (GeVic)

=>»Use fit at small pt and sideband at large pt
= Agreement in medium region, differences smaller 2%

Systematic uncertainty for Fit-Method:

- Use different fit functions (different function for signal and background)
- Use different fit ranges

- Check for differences when integrating over peak width of 2 or 3 sigma
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Peak extraction: Sidebands

e

Need to know width and mean of peak in order to know from where
to where to count! Where do | get that from?
| have it from the fits, but fits aren‘t that good at large pit.

0565 Mean of eta invariant mass peak Width of eta invariant mass peak

0.045 =

058 C

C 0.04 —

C C ] N
oass 3 ..- --.-fi i* ;T [ 0.035 N

- T = -
0.55 ﬂT L C 'm

- u * ﬂ.l:}:i:— l.-
- e A

u Data 0.025— L= I
0.54 — 1 * C L]
o P s A e S R B o &

=>» Better take width from MC, way more stable (statistics).
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Peak extraction: Sidebands

Sideband method for eta: Mean and width from Data / Mc

Mean and width from Data/MC:
Similar conclusions as before....

11

1.05

0.95

0.9

0.85

0.8 Cross section ratios: Various sidebands for ERT triggered eta

1.15 P

0-75 L | A | l 1 | | 1 L 1 I 1 L 1 J Lol 1 J | L | L 1 L | L 1 L l 1 | l 1
2 4 6 8 10 12 14 16 18 20
PriGeVie) g4l A

P AN SRR RN FORROR A OR NN OO WSROI SRS DR |

- Check different positions for sidebands s T Tt s
- Check different width of sidebands SR L T TS T L S O O
(larger sideband yields more statistics,
but will extend to a regiOn further away gg__ ............. ......... - ............. .............
from peak) A .

0.85 i e e
pr (GeVic)
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Summary

Qi

* Plan ahead: Systematics need lots of time

* Think about all possible effects

* Check everything possible

* Try to understand what you see

* Free yourself from expectations

* Don't look look at the result while tuning cuts
* Talk to your colleagues

* Have good reasons for assigning sys. unc.

* Write all detalls into your analysis note
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