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Definition

A definition: Systematics are whatever you still have to do after you have 
                    your initial result (but your time is already running out...) 

A real definition:
Measurement uncertainty due to uncertainties on external input or
due to uncertainties not due to the statistics of your data.  

Remarks: 
•  The term systematic „uncertainty“ is preferred, as your measurement 
    hopefully does not contain errors....
•  Often no clear recipies how to determine the systematic uncertainty.
   -> Needs experience from own analyses and closely following
       (or reading about the details of) other analyses
•  Sometimes the value assigned is based on an „educated guess“  
   -> Needs „gut feelings“ based on experience

This lecture cannot provide experience, 
but hopefully some ideas, strategies... 
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Examples of systematic uncertainties

• Background
• Acceptance 
• Efficiencies
• Detector resolution
• Detector calibration (energy scales) 
• MC simulation
• Theoretical models/input
• External experimental parameters (branching ratio,...)
• „External“ parameters (lumi, ....)
• Varying exp. conditions (temperature, air pressure, ...) 
• You (the biased experimentalist)
• ....many more....
• And finally....the unknowns 
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Variation of particle properties with time

PDG: „Older data are discarded in favor of newer data when it is felt that 
the newer data have smaller systematic errors, or have more checks on 
systematic errors, or have made corrections unknown at the time of the 
older experiments, or simply have much smaller errors.“

PDG:

Some of the (later) results biased by earlier results and thus „similar“?  
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Outline

• Definition (done)
• The (sometimes) fine line between 

statistical and systematic uncertainties
• Some examples:

– Avoiding systematic uncertainties
– Detecting systematic uncertainties
– Assigning systematic uncertainties
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Statistical or systematic uncertainty

Example:
Your W-> l ν  analysis:

The efficiency: Statistical or systematic uncertainty?
1) In the beginning, you might have to get the efficiency from MC
     -> systematic uncertainty
2) More data arrives: Your friendly colleague gives you a first lepton efficiency
    based on data from his Z studies 
    (cross section of W order of magnitude bigger than cross section of Z)
    -> not truely „external“ parameter (correlated) -> assign as statistical uncertainty 
3) Some decent data set available: 
    The efficiency from the Z studies by now has a small statistical uncertainty: 
    stat. << sys. unc. inherent in your colleagues method or/and 
    stat. << sys. unc. arising from the fact that his efficiency maybe does not 
                neccessarily apply exactly to your case
    -> systematic uncertainty
4) Somewhere in between 2)  and 3) you have to consider a systematic and 
    a statistical component from your efficiency to your overall uncertainty

BGN N

Acc efficiency L
σ −=

�€
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Avoiding systematic uncertainties

• Biased experimentalist
   - Don‘t tune your cuts by looking at your signal region
   - Tune cuts in background region, on different channel, on MC, ....
   - „Blind analysis“: Part of data is covered (or modified) until all the   

analysis is fixed 
• Acceptance, MC, Background,...
    - Is your cut really needed or does it have large overlap with other  

cuts? Fewer cuts are usually better....
   - Don‘t use cuts that are not well modeled in MC (if relying on MC), 
     usually better to live with more but well known background
     (e.g., acceptance from MC for cross section measurement)
• The unknowns
    - Find the unknowns by talking to (more experienced) colleagues
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Example: Biased experimentalist
• Cern 1967: Report of narrow dip (6 standard 
  deviations) in the A2 resonance
• Next: Other experiments also report dip (< 3σ )
  (suspicion: some that were also looking but 
  did not see anything did not report on it?)
• Later: dip disappears with more data

What has happened:
• A dip in an early run (statistical fluctuation) 
  was noticed and suspected to be real
• Data was looked at as they came in...and was 
  checked for problems much more 
  carefully/strict when no dip showed up
  (if you look long enough you will (always) 
  find a problem, especially in early LHC running!)

Initial statistical fluctuation became a significant false discovery!
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Outlier/data rejection: The textbook

• Chauvenet‘s criterion: Reject data point if: 
     probability x N (number of data points) < 0.5
• Example: 8 values taken with one being 2σ  (5% probability) 

away from the mean 
     -> 0.05 x 8 = 0.4 -> reject  
     In other words: up to 10 events -> reject outside 2 sigma
• Only works for gaussian distribution. One often has tails...
• Only good for the case of exactly one outlier...
• Probablility < 0.5 x 1/N ....why 0.5?
• Having a prescription does not mean that one can blindly 

follow it ....
• No generally applicable/valid prescription for data rejection.
• This textbook example is not commonly used
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Outlier/Data rejection: The reality

• Quality of early LHC data will be questionable and be 
taken under rapidly changing conditions 

     -> Will have to reject data, but be careful

• Try to understand why the data was an outlier
• Have external reasons for cutting data

• Pay attenion: Dou you only start searching for 
problems because you have a result you did not 
expect? -> self-biased experimentalist

• Dont let your result „make“ the (cut) selection -> 
very much self-biased experimentalist
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Detecting systematic uncertainties

Note: MC (no stat. unc. shown) should always have negligible statistical 
          uncertainty compared to the one from data.
          -> An uncertainty should never arise from limited MC statistics.
          -> Generate at least 10 times more MC data than you have real data.
              .....likely difficult at LHC......

Most problems can be seen by eye

good bad

Example: Data-MC comparison -> look at all possible variables
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Divide data by MC

• Deviations better visible when plotting data/MC 
• Significance of disagreement:
  -> Fit a constant line, check χ2 /dof

good bad



Terascale Statistics School  Frank Ellinghaus 13

Stability of result

• Result stable over time?
   - compare results for different time periods, e.g., before and   

after shutdown, or change of beam conditions, or change of  
 detector setup, day and night (temperature), nice weather

    versus bad weather (air pressure), ... 
• Results stable in different detector areas (if symmetric) ?
    - upper half versus lower half?
    - forward versus backward (if no physics reason)?
• Result stable using different methods?
    - when you have two methods that should give the same 
      result you should do them both
• Result stable as function of analysis variables? ->
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Example: CP violation @NA48
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Analysis in bins of kaon energy:
-> Disagreement at the edges.
     No reason for this behavior found.

How bad is it?  
−>  χ2  / DOF = 27/19 ....and how bad is that?

Rough estimate: 2 2 6.2dofdistribution
nχσ � = -> 1.3 σ  effect

Better estimate: Probability (27,19) = 10,5 %    [ Root: TMath::Prob(27,19) ]

Not really unlikely to be statistical fluctuation if it weren‘t the outermost guys.... 

Double ratio of decay widths:
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How to check...?

How can one check?
-> Enlarge test region if possible...
     -> Additional bins okay
         -> no systematic uncertainty assigned

Hypothetical question:
If it had looked like that -> 
...Now you have to understand the effect

Then:
Did you understand it -> Can you correct for it?
If not, do one of the following:
• Discard outer bins if independent information 
     justifies this.
• Last resort: Determine systematic uncertainty.   
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HowTo assign systematic uncertainties

max min0.5( )x x xσ = −

mam x miax min n

1
( )

12
0.3( )x xx x xσ = − �−

Simplest case:
Uncertainty (standard deviation) on parameter x (branching ratio, ...) is known.
-> Vary x by            -> result varies by   

Still easy:
Possible range for input parameter x (min. x and max. x) is known.
-> Assume uniform probability over full range (if reasonable).

(„Gain“ of 60% compared to naive                                 )

meas sig Sig BG BGA f A f A= +
In case you have no idea about the background
asymmetry, it still is bound to [-1,1].

Example: You measure an asymmetry A = (B-C) / (B+C). The asymmetry is due 
to the asymmetry from your signal and your background process:  

xσ�

2

12BGA
σ =

resultσ�

->
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Cut variations:

Cut variations commonly used to check stability of result.
• But: Difficult to learn something from the result!
           Usually not a good way to determine systematic uncertainty

Two possibilities: 
1. Result is stable -> good, done
2. Result is not stable 

-> will not tell you why
-> cannot just assign sys. unc.
-> look at underlying distributions

In most cases systematic uncertainty can only be assigend if reason for 
variation is „understood“. 
(but if reason understood there might be better ways than assigning sys. unc.)

But first, how to work with cut variations ->
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Correlated Data sets
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Cut variations usually lead to fully correlated data sets:

• Default cut: sample A with result
• Tighter cut: sample B, fully contained in A , result 
      -> correlated errors, i.e., stat. unc. not meaningful
      -> Significance of difference?

 Consider sample C = A w/o B
     Use standard prescription for averaging 
     results (weighted average):

A Ax σ�
B Bx σ�
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Uncorrelated error
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A useful table

Lara De Nardo, HERMES internal note
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Now look at the cut variations again

Using the uncorrelated errors we can now 
judge on the significance of the difference.

Significance of difference at most 1σ
    -> usually no sys. unc. should be applied
        Don‘t be conservative (in order to hide 
        possibly undetected other issues?)

 Impossible to assign systematic uncertainty
  -> Effect has to be understood
  -> check underlying distributions
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More possible scenarios

Variation should be understood:
    -> check underlying distributions
    -> what happens for tighter/looser cuts?
    ....try hard......
            ....harder........
                 ...If clueless at the end of the day 
    -> variation ~ systematic uncertainty
        Not nice: sys. unc. ~ stat. unc.
    -> large contribution to overall uncertainty 

Same as above applies, but: 
systematic uncertainty  << statistical uncertainty,
-> don‘t try too hard if you have bigger fish to fry...
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Cut Variations: Examples

Tricky: can be statistical fluctuation or 
systematic effect
-> look at underlying distributions
-> check with even looser/tighter cuts
-> ....
-> If you find nothing (else) suspicious, 
    be bold -> no systematic uncertainty. 
    In case of doubt ->  variation  ~ sys. unc.

Summary:
• Cut variations are usually only useful to check the stability of your result
• When using cut variations, pay attention to correlated data sets and
  calculate significance of difference
• If your result is not stable, find the reason...and don‘t just assign the 
  difference as systematics! 
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Small statistics

Data-MC comparison with small statistics:
• Systematic differences can be hidden by stat. uncertainties
• Multidimensional (as function of correlated variables at the same 

time) comparison not possible, also no fine binning
• Statistical fluctuation can fake systematic effects

Can you enlarge the data sample?
• Release cuts (-> enlarge background)
• Look at different (control) channel -> next example

In general, be careful: 
• Is the additional data representative (different kinematic region, channel, ...) ? 
• Extrapolating to your area of interest might involve additional uncertainties, 
  especially if your signal sits in a tail..... 
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Data-MC comparison

Example: Rare decay:

χ2  / DOF = 31.5/29 is okay, but obvious disagreement beyond 0.16 GeV

Unable to find source for this -> 

0K eπ νγ+ +�
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Estimate systematic uncertainty

Estimate systematic uncertainty:
• 10 % of all data above 0.16 GeV 
• 20 % more data than MC above 0.16 GeV
   -> Systematic uncertainty of  +/- 2% on decay rate
       -> Largest single uncertainty in analysis
           -> Try to do better...

....estimate systematic uncertainty:
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Look at control channel  

0K eπ ν+ +�

0K eπ νγ+ +�

-> No discrepancy in more abundant control channel
-> No estimation of systematics this way, but does not seem to be a detector problem!
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PDFs: They even come with a recipie!

1 2
1 2 ˆ( ) ( )pp B B partf

pdf x pdf xσ σ�� � �

PDF is universal!

Unsicherheiten in den PDFs  
Unsicherheiten bei Vorhersagen (z.B. LHC)

 Calculate the pp cross section

PDFs (Parton Distribution Functions):
QCD-Fits using a certain paramaterization and various boundary conditions 
and assumptions

Fits to a single data set can „easily“ take into
account the stat. and sys. uncertainties of that measurement...

U=u+c≈ u, D=d+s≈ d
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Data in global fits
MSTW, arXiv:0901.0002

Data sets are from colliders and fixed target, 
from ep, pp, eA, ν A, ....., i.e., their probed 
x-range and their sensitivity to a certain 
parton is very different. Their systematic 
uncertainties are also not necessarily derived
in a consistent way......

Until recently, only the result (central value)
of the fit was available and fed into your 
favourite MC generator.....

Most fits are „global“, 
i.e., they fit „all“ the available data 
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The parametrization

All input parameters are allowed to vary.
Unfortunately highly correlated and even partially
redundant („full“ compensation possible).
 MSTW uses subset of 20 (sufficiently independent) parameters, 
     others fixed at best values.
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 The PDF error sets
 Combinations of 20 parameters are expressed in 
 eigenvectors and eigenvalues of covariance matrix 
 Eigenvectors are orthogonal
 Pairs („up-down variations“) of eigenvector PDF 
     sets span the hypersphere with a radius T
     corresponding  to the allowed tolerance 
     for required confidence interval, 

2T=Δχ =1�e.g., for a 68% confidence level 

The recipie:
The (asymmetric) uncertainty on a quantity 
(e.g., cross section) is derived by separately 
adding all (20 in case of MSTW) „up“ and all „down“ 
fluctuations on that quantity in quadrature 
(orthogonal eigenvectors). 
If a pair of eigenvector PDF sets causes the 
quantitiy to fluctuate in one direction add once 
the maximum and once zero  see example
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Example: Acceptance 

• Variation of PDF results in variation in derived acceptance
– Study impact of PDF variation around best fit value

• MSTW2008/CTEQ66 provide set of 40/44 variations of mean PDF 
(error sets)

• Calculate 40/44 acceptances using error sets
• Add up deviations (up and down separately) from mean acceptance in 

quadrature to get (asymmetric) systematic uncertainty   

• Technically done via event reweighting (“LHAPDF”):

–  weight (w) for each event with respect to central value (CV) PDF

• id1,id2: quark flavours, x1,x2: Bjorken-x, Q2: scale

)2,,()1,,(

)2,,()1,,(
2

2
2

1

2
2

2
1

idQxPDFidQxPDF

idQxPDFidQxPDF
w

CVCV

ESES

⋅
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Result and warnings

Warning, these uncertainties usually do not take into account:
- Form of input Parametrization
- Higher order QCD
- Higher order EW
- Nuclear corrections for neutrino data
- Choice of data sets
- ...

CTEQ NLO error set fed in PYTHIA: 
Acceptance 

(for Z->ee in ATLAS with some cuts 
on the eta and pT of the electrons)

is 47.6 + 0.8 – 0.9 %



Terascale Statistics School  Frank Ellinghaus 34

Minimize uncertainties „All in one“

If systematic uncertainties are not correlated you can (usually) add them in quadrature.
If they are/might be correlated you have to add them linearly  can get large, while
in fact they might partially cancel. 

Try to address uncertainties that might be correlated „All in one“ shot.

Example misalignment:
- misaligned (forward) spectrometer
- misaligned beam 
- effect of transverse magnetic field (holding field for transverse target) on incoming 
  and scattered electron

If possible: Have all effects modeled in the same MC and vary them all at the same time.
(Indeed, some cancellations were found (HERMES@DESY) 

B
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Peak extraction (PHENIX@BNL)

2 < pT < 3 GeV/c 3 < pT < 4 GeV/c 4 < pT < 5 GeV/c 5 < pT < 6 GeV/c

Mγ γ  (MeV) Mγ γ  (MeV)Mγ γ  (MeV) Mγ γ  (MeV)

Signal/Background extraction:
• Fit to Signal+Background
• Sideband
• Same charge backgound (not in this case)
• Mixed background (usually for large combinatorial background, e.g., high
      multiplicity in heavy ion collisions
• Have an excellent MC descripton? Get it from MC directly....

η −>  γ γ
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Many bins in pT with different shapes
2-2.5 GeV 2.5-3 GeV

18-20 GeV

One 
Method 

To 
Rule

Them 
All?

Not
A 

Good
Idea!
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Peak extraction: Sideband/ Fit-Method

Systematic uncertainty for Fit-Method:

•- Use different fit functions (different function for signal and background)

•- Use different fit ranges

 - Check for differences when integrating over peak width of 2 or 3 sigma 

These are not automatically your 
systematic uncertainties:
• Sideband method needs somewhat
  linear background, not true in 
  small pT bins
• The fits are maybe not good
  (enough) in large pT region

Use fit at small pt and sideband at large pt
 Agreement in medium region, differences smaller 2%  
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Peak extraction: Sidebands

Need to know width and mean of peak in order to know from where
to where to count!  Where do I get that from?
I have it from the fits, but fits aren‘t that good at large pt.

 Better take width from MC, way more stable (statistics).

MC

Data
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Peak extraction: Sidebands

Mean and width from Data/MC:
Similar conclusions as before....

- Check different positions for sidebands
- Check different width of sidebands 
  (larger sideband yields more statistics, 
   but will extend to a region further away 
   from peak) 



Terascale Statistics School  Frank Ellinghaus 40

Summary

• Plan ahead: Systematics need lots of time
• Think about all possible effects 
• Check everything possible

• Try to understand what you see 
• Free yourself from expectations
• Don‘t look look at the result while tuning cuts

• Talk to your colleagues
• Have good reasons for assigning sys. unc.
• Write all details into your analysis note 
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