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Introductory Track fit example

Example: for possible discovery
Z' — ut ™ need precise muon track fits

[{Zeus Run 59848 Event 13@iH86: 17-06—-2006 time: 04:01:41 |

30

Track: coordinates y; mea-
sured in n detector layers at
fixed positions x;

= perform track fit
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y (cm)

Introductory Track fit example

Example: for possible discovery
Z' — ut ™ need precise muon track fits

[{Zeus Run 59848 Event 13@iH86: 17-06—-2006 time: 04:01:41 |

30

15

10

sured in n
fixed posi
= perforr

e b b b b b b ns
40 50 60 70 80 90 100

X (cm)

Track: coordinates y; mea-

detector layers at
tions x;
n track fit

e Typical Assumptions:
— Measurements with gaussian uncertainties
— Linear(ized) model, here: y = ag+ aix + azx?
(but could also use exact track helix model)

e Construct y?:

BRI W e e

3
g;

— Determine ag, a1, as by finding x? minimum
(normal equations)
e Check consistency:
— use x? and y?-fit probability
— reject outliers
e Analyse results:

— parameters, errors and correlations (error el-
lipses), track trajectory error band

— calculate momentum (error propagation)



L ecture Part 1

o Least square y?-fit method introduction
e Fit of a constant

2 .
® ), . as consistency check



Method of least squares fit - Intro

Example: Particle trajectory measurement

y (cm)
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= how to determine a?

—

n-measurements Yy; -
at fixed z;

Model: y = f(z, a)

here: y = ax



Method of least squares fit - Intro

Example: Particle trajectory measurement

14

s b1 Dd2 Da3 De4 | Tl-Measurements Y, T O;
al - at fixed xX;
08 0 (0] Model: y _ f(x) a)
06 |- h@’re . y — QX
0 1 2 3 4 5 6 7 8 XQ(Cm;.O

= how to determine a?
= |dea: for correct a one expects: |y;— f(x;,a)|s0; -



Method of least squares fit - Intro

L YOURANY. ..
— X2 — Z (w: fg“a)) — Minimum w.r.t a
=1 !

. . R 2
— determine estimator a from ddia = ()

—



Method of least squares fit - Intro

— i (yz_
1=1

. . R 2
— determine estimator a from ddia = ()

—

— Minimum w.r.t a

da|a a

2y

z'aa

Cdf(zi,a)

da

0

In general not analytically solvable.

= use iterative (numerical) methods (MINUIT, Mathematica)



Method of least squares fit

Most general case

® y;,y; correlated measurem. with cov. V;;

e m fitparameters a

x> = > (i — fl@, @)V (y; — flay, @)




Method of least squares fit

Most general case

® y;,y; correlated measurem. with cov. V;;

e m fitparameters a

X

2

o1
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Example for two correlated measurements

4y, =0.03+-0.01

¢ y,=-0.01+-0.01

Measure track in two detector layers
with global position uncertainty

v:

0.01%2 + o2

o

2
corr

corr
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CTCOTT

0.01%2 + o2

corr
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Fit of a constant

Det 1 Det 2 Det 3

02 —

Measure position of hori-...

zontally flying particle — * g

01
-02 —

-03 +—

-04 —

X (cm)

— Averaging of n measurements y; = 0;

(
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Fit of a constant (one measurement)

“Ildiot example” of one measurement 1

Det 1

2 _ (y1 — @)2
o
CZ 2
Min.x* X 0
da

— Estimated value:

— Error propagation:

- 0.
a = Y
O — 01

¢1



o o o
w = wn

probability density

S
o

0.1

True and inverse probability densities for one measurement

with gaussian uncertainty: a = vy, 0; = 03

True probability density to observe
a for given true value a,:

1  (a—ao)?

p— - € 202
P \V2To

But what if we don’t know a?

Estimate “inverse probability den-

sity” for a, from the measurement

a+toy:

Note: this is not a real prob. density!
from now on we will use a as synonym for q!

71



Fit of a constant (one measurement)

Inverse probability density for true a:

(a—a)?

0.5

B 202
prv@ a
with x* = (C”‘S”)Z = pn~e X2
1 1d*y?
i—QZ— X2
o 2 da la=a

= XQ(d = U&) =1

Note: These two relations hold for a
large class of one parameter y>-fit-

Q = problems!

G1




Fit of a constant - many measurements

Probability for true value a to observe measurements y;,
with 2 = 1, n:

but we don't know true a,
so let’s turn the whole thing around to estimate probability
density for true a from the measurements

91



Fit of a constant - many measurements

Reca//ing p(yla Yz, .-, yn’a) — €_X2/2

Expand 2 around its minimum at a:

dXQ 1 d2X2

2 2/~ A

p— IL . — _I_ —

X =x(a) da |a=a @ —a) 2 da? |a=a
=0

-(a —a)

LT



Fit of a constant - many measurements

Recalling p(y1,vyo, ..., ynla) = e X°/2

Expand 2 around its minimum at a:

dXQ 1 d2X2

2 20 A ~\2

p— |L i — —I— — -

X =x(a) da |a=a @ —a) 2 da? |a=a (@=a)
=0

2.2
d X 'Hesse matrix’

1
—_ 2 A . - ~ 2 . - —
— X (CZ)‘I—H (a’ a’) with H 9 daQ |a:& (for one par. a number)

_ X (&) _lH A N2
— p(yhy%-“ayn’@) X e 2 . e 2 (a—a)

Fit consistency  gaussian density

= Iinterpreted as inverse probability density for true a:

Gaussian distribution around @ with width o = H /2

ST



X“(a)

Generalisation to any one-parameter (inear) fit

15

0.5

. (a—a)?
X(a) = x*(a) + ——
94
—  x(a£1oa) = x*(a) + 1= X + 1
B 0] : szin+1
— Read error directly

] from x? curve
I ....»"fxzmin
05 a-o a a+o 3.8

61



Mini-exercise Averaging of two meas. via y* parabolas

Two measurements y; and y, of the
observable a are represented in the
figure by y? parabolas:

X; = (yi—a)?/o7; i=1,2
e Determine (yes by eye!) from the

two Y* curves the values v, oy
and Yo, 09

e Draw the total y?, i.e. the sum
of the two parabolas (yes, do it by
hand :-)) and determine a and oy

(use Xin and x> = X2in + 1)

e How much is the error o; reduced
compared to o; and 057

e Relax your eyes and hands ;-)
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Averaging several measurements

. measurements y; = 0;

0.4

y (cm)

0.3

0.2

Measure position of hori- ..
zontally flying particle — °

-0.1
-0.2
-0.3

-0.4

(Note: o1 # 09, etc.)
(Quiz question: Why is %Zyi not the best average?

Det 1 DUT Det 3
®
| | | | | |
0 1 2 3 4 6 7 8
X (cm)

1¢



Averaging several measurements

n measurements y; = 0; :

GG



Averaging several measurements

n measurements y; = 0; :

¢é



Averaging - just reformulated

— Single measurements contribute with weight GG; = ﬁ

n
- ._ . - _1d3:3
Define GG, = E 1 Gi; Hesse matrix H = 5—3 = Gy
1=

n n
A 1 1
| @ = 'ZGzyz':G—S'ZGz%
>, G = i=1
1=1

e

o; from simple error propagation:

1=1 1=1
1 & 1 1
— 2 Z Gz — G n )
i=1 > 1/o;
1=1

= Corollar: least square fitting is nothing else than a clever mapping of measurements to
the fitparameters and obtaining fitparameter uncertainties using error propagation



The role of the Hesse matrix

illustrated for weighted average (just a number)

nl
=25
o

H “grows”
with each
measurement

—

N ¥ _4

H is “counting the information” from the measurements

Flnally V = H_l Note: all this holds also for fits with many parameters

G¢e



y (cm)

Mini exercise weighted average

004 |- Weighted average of two
003 |- measurements:

002 —

Track
oor - trajectory  §VY, = 0.01+-0.002

-0.01 —

002 — ¢ ¥,=-0.02+-0.02

-0.03 |-

-0.04 |-

-0.05 ‘ \ \

9¢



y (cm)

0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

-0.05

trajectory

4 V,=-0.02+-0.02

Mini exercise weighted average

Weighted average of two

measurements:

« 1 0.01 —0.02

¥y=—7 1 ( + ) — 0.0097
0.0022 + 0.022 0.0022 0.022

S

=\/ L 000109
_|_
0.0022 0.022

LG
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Mini summary of what we have learnt

One parameter fits:

e Least square expression for independent measurements:
Rl (s a))2
X2 — z:l ('!h fo(%?ua))
=
= get estimator ¢ from minimum x? < dx?/daj,—; =0

e True physics parameters have a definite value, so true probability
densities exist only for the measurements, fitting means
estimating (inverse) probability densities for the true parameters

1 1d%¢?

o — = — eneral relation
o2 2 da? |a=a (e )

e Y*(@a+o0;) =1 (general relation)

e Averaging several measurements can be easily done graphically by
adding individual yx? parabolas

e Least square fitting is nothing else than clever mapping of
measurements to fitparameters; errors of fitparameters can be
obtained from simple errorpropagation

1 d2X2

5 da? |ad “counts the information” from the

e The Hesse matrix H =
measurements



Consistency of measurements

Recall “inverse probability density” for averaging n

measurements:
2
_X7(a) L ga—a)2
jp(ylﬁy%'“ayn‘a) X e 2 . e 2 (a—a)

Fit consistency gaussian density

Now lets have a closer look at the first term

6G



Consistency of measurements

Example: Two measurements 1

value a be known, are the measurements consistent with a?:

Reasonable x2

I
% Y,

- 01 and Y

Bad

- 09; the true

XZ

0¢g



Consistency of measurements

Example: Two measurements y; &£ 01 and y &£ 09; the true
value a be known, are the measurements consistent with a?:

Reasonable Bad >

_______________________ . i
| :

X2 — 9 X2 3
— x“ is a measure of consistency
But how should x? be distributed?




X2 for two measurements and known true value

Expected density for (y1,72) (simple case a = 0;01 = 09 = 1):

f(y17 yz) = %e‘y%/Qe—yg/Q _ %e—ﬂ/z

with 7 = \/yf + 43 = \/x°

4



X2 for two measurements and known true value

Expected density for (y1,72) (simple case a = 0;01 = 09 = 1):

Py, ) = e e /2 = Lo

2T
with r = \/yl—l—y2 — \/?

Probability to find value between r and r + dr:

f(r)dr = Me”ﬂ/Q dr = re~ 12 dr




X2 for two measurements and known true value

Expected density for (y1,72) (simple case a = 0;01 = 09 = 1):

Flynoan) = e e b2 = Lo yz
with r = \/3/1 + 2= \/?

Probability to find value between r and r + dr: /

f(r)dr = QW e 2 dr = re" /2 dry \J )

z=1%— f(2)dz = f(fr)%dz — %6_2/2 dz

— introduces Xz—distribution for = = x? and two dimensions

(ndf=2): f(2,2) = te=*/2



— maps the x? in n dimensions into probability density for

v*-function for n degrees of freedom

1

2

(XZ)n/Z—l . 6_X2/2

with F(n/2):/ dte /21
0

x2 distribution

— Ngor =1
— Ngot =2
r"dofz?’
— Nyt =4
Nyor =2

Properties:

fooo f(XQa n)dXQ =1

() =n

V(X*) =2n; o(x*) = v2n
(x*/n) =1

V(x*/n) =2; o(x*/n) = \/2/n

G¢



v* distributions for various n

[ X2 distribution | [ X2 distribution |

v distr.

[ x%n_, distributon ] X2/n ., distribution ]

0.1

0.09
0.08
0.07

0.06

- x?/n distr.

0.01

0 0.5 1 15 2 25

2 & : 2
X n dof X /n dof

9¢



0.3

0.2

0.1

f(x?,2) function and

prob(x*, 2)

a Y2 greater or equ
IS a common measu

F(x%,2)dx

Probability to observe for repeated experiments

| than the current one
re for consistency

Here prob(x? = 3,2) = TMath :: Prob(3,2) = 22%

0
01 23 45 6 7 8 91011121314151617181922

X

ROOT };unct'ian

0

RS



prob(x?*, n)-function for n degrees of freedom

09 1 50
prob(XZ’n) — / f(x’z,n)dx'z = = : / dt et 41/2-1
X

2/9

(n/2)

20
X2

Note: for repeated experiments expect the observed values of
prob(x?,n) to be flatly distributed over interval [0, 1]

[¢



v* for averaging measurements

006 —

y (cm)

004 —

002 —

Weighted
Average

-0.02 —
-0.04 —

-0.06 —

x (cm)

The figure shows the result of a fit of a constant using n measurements.
When repeating the fit many times the resulting x2 . distribution should
follow a y? distribution with n — 1 degrees of freedom. One degree of
freedom is sacrificed to determine the weighted average. A prove for this
(for n = 2) is given in the appendix.

6¢



Mini exercise y* and probability

3
O 006 -
>
0os |- The figure shows the
result of a fit of a
002 o .
o o constant. Determine
0 bomemee e the total y* (from
¢ ¢ reading the figure)
002 o i
and the y?- probabil-
004 — Ity

oy



Toy simulations of | Fits with problems: outliers

constant fits through : .
10 data points ° No outliers 10% random outliers (100)

track g

nnnnnnnnnnnnnnnn 10

£ Me: F 3.772

0.03— RM 0.02= RMS 3.481

C X2/ 12.71/9 C X2/ ndf 23.83/9

0.02 p0 0.003733 + 0.003162 0.01— — | po -0.003173+ 0.003162

. r = I
Exemplary fit : n 1 —+
Xe p a ry I 0.01— E T ' ‘ T
F ‘ -0.01—
o ‘ ‘ ‘ ] 0.02—
—0.01— -0.03—
£ -0.04—
-0.02— E
C -0.05—
=003 il S O S I A (VFAVEN VAN BPVAVIIN VR PR |
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5} 6 7 8 9 10
chi2d chi2d

E Entries 2000 60— Entries 2000

Mean 8.873 E Mean  16.05

RMS 4.224 r RMS 12.2

50

X,%m-n distribution

40
for 2000 experiments
20F
10F
07\\\‘\\\\‘\\\\‘\\\\‘\\H‘H’H—(\‘\\\\‘\\\\‘\\\\‘\\\\ 07\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\\\\\‘\\\\‘\\\\
o 5 10 15 20 25 30 3 40 45 50 0 5 10 15 20 25 30 35 40 45 50
prob(chi2) distr. pchi2d prob(chi2) distr. pchi2d
= Entries 2000 = Entries 2000
30 I Mean 0.5096 900f Mean 0.2372
RMS _ 0.2902 RMS 03141

tion for 2000 experi- =
ments

500

prob(x? . ,9) distribu- = M‘l "

4001~

300~
F 200~
0y 100f-
ol b b b b b b L Ly O’WLW—M&H—WPW&—MJ nnnnd
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

= X?nm and prob(x,?nm, ndof) highly sensitive to wrong measurements



CDF-I ;
DO-1 H =
CDF-II ——
LEP-II ———h
NuTeV —_—. :
R R R I | L
80 80.1 80.2 80.3 80.4 80.5 80.6
M,, [GeV]
CDF-I ;
DO-I n——-—c
CDF-II i
LEP-II ——
NuTeV —_—. :
R R R Cl | L
80 80.1 80.2 80.3 80.4 80.5 80.6
M,, [GeV]
CDF-I :
DO-I -
CDF-II —_—
LEP-II =
NuTeV
L | | | | P
80 80.1 80.2 80.3 80.4 80.5

World average of W boson mass

or how to arrive at a good x>

Xowin = 10.8, ng,r = 4, probability = 0.029

Taking out NuTeV result:
X2 = 1.7, ngos = 3, probability = 0.64

“Outlier rejection”, is this allowed?

Scaling all errors by S = \/X2,,;,,/Ndoy = 1.64
Ximin = 4., Ndor = 4, probability = 0.4

Standard procedure by Particle Data group
— “destroying” the hard work of many experimentalists

44



15574

Mini summary of what we have learnt

e The Y. of a fit is a consistency check
e Expect x2,./nis ~ 1 for good fits

o if \2 . /ng,; significantly larger than one then suspect

— data could contain outliers or errors are (generally)
underestimated

— the fitfunction might not be the correct model for the data

e for repeated experiments (e.g. many track fits) expect for good fits
— mean value of x7 , /ng,; distribution — 1

— and flat prob(x2,,, nioy) distribution in interval [0,1]



If time allows:

Average 10 measurements with noise:

with Root Macro pOtoyf.C

Note: Macro available at
http : | /www.desy.de/obehnke/stat/school_marl0/pOtoy f.C

Task instructions available at
http : / /[www.desy.de/obehnke/stat/school_mar10/compueb_pOtoy f.pdf

7474



Lecture part 2

e General solution for linear least square fits
(normal equations)

e Straight line fits

i1



y (cm)

0.3

0.2

0.1

-0.1

-0.2

-0.3

-04

Our study object

Det 1 Det 2 Det 3
| | | | | |
0 1 2 4 5 6 7 8

The main trajectories
we will study in this
workshop are straight
lines:

Yi = ag + a1,

This is a classical lin-
ear least square fit
problem.

o9y



Linear least square fits

Yy vector of n measurements

Linear model ¢ : = Aaq,

Example: y = ay;

y1 (1)
with cov-matrix V'

a vector of m fitparameters

A%



Linear least square fits

y1(z1)
y vector of n measurements | . with cov-matrix V
a1
Linear model ¢ : = Aaq, a vector of m fitparameters
1 tm
Example: y = ag; — ad=(ay); A=
1

In general: A = A(Z), but no dependence on @

“Master formula”: | x> = (7 — AQ)' V-1 (7 — AQ)

— to be minimised w.r.t @
— obtain estimators @ and covariance matrix Va’

1 %4



Examples for linear least square fits

Linear means that y depends linearly on the fitparameters a;.

8 L X’/ ndf 4752 /| 4 8 L X’/ ndf 3456 / 3
- A0 4180 + 0.2236 B A0 0.9500 + 0.4541
6 } 6 ; Al 0.9400 + 0.1581
C —— I :
e e — J 4 — . ao
C - a = )
2 [ Konstante y = a0 2 - ai
0 I BRI RN SRR BN 0 Coot ol \Gﬁ"\oqe\ y \=\GQ ﬁ“dﬂ *
0 1 2 3 4 5 0 1 2 3 4 5
10 - X’/ ndf 4286 / 3 10 - X’/ ndf 6568 / 5
g N asmeis om g A T o
- A2 01429+  0.3273E-01 - A2 1198+  0.3248E-01
6 6 M woneers  omimos
4 - 4 -
2 F 2 2 F ;
= Parabel ¥=00+01 x + 02 x FPolynom y = a0 + a1 x + ... on x
0 L | | | | | ‘ | | | 0 L1 T T R [
0 2 4 6 0 2 4 6 8 10
E /ndf 4458 7 5 e_ml
— P1 175.6 = 15.10
100 = -
75 = Normierung y = a exp(-x) @ = (a’), A=
= e In
50
25 «— Watch out: function can be
0" highly non-linear in x
0 2 4 6

oV



General solution via normal equations

0¢g



General solution via normal equations

' 2 dX2 ty/—1:7 ty/—1 A=
Mln.XHW:—QAV y+ 2A"V T Aad =0
Solution:
i = (AV1A) 1AV Ly |
Normal equations:
— H_lAtV_l )/ Powerful & simple linear

algebra to solve fit!

— UA'V-1 with U = H ! = Cov(a)

16



Straight line fit through n detector layers 2~ 7 7 7
2
n i — Qo —ayx;)” e e
2y Y - O N O =
| 1 ] o> 0
g:Aaa a= <a0>, — . ; At:< >’ V =
ai 1 I Ln 0 o2
Apply normal equations:  (em)

1
i = (AVTTA) AV g =c2(ATA) . Z At = (A'A)1AY .

o2

4



Det 1 Det 2 Det 3

y (cm)

Straight line fit through n detector layers

1=1 0.2 _________________________________________
I = | | a? 0
g:AC—I:, C_i: (CLO)? — 7 At_( )7 V:
a x Tn
! 1 =z ! 0 o2
Apply normal equations: x (cm)

1
i = (AVTA) AV g =0%(ATA) ﬁAt = (ATA)TLAL .
—1

_ i Y _ Y

¢q



Straight line fit through n detector layers

Apply normal equations:
7 (ATVLA) LAV Ly = 62(AtA) !

(

>l D

—1
1z ) (

T x2

—1

[

Zi Yi

Lo

0-2

a2 0
0 o2
j = (AA)A
—1
N Nz
NZ Naz2

y (cm)

Det 1

Det 2

X (cm)

1748



Det 1 Det 2 Det 3

y (cm)

Straight line fit through n detector layers

=1 0.2 __________________________________________
1 I 1 1 0'2 0
ij = Ad; a:<“0>,A: | ,At:< >,V:
a x T,
' 1 z, ! 0 o2
Apply normal equations: x (cm)

AN

1
i o= (AVTATAVTI = (AT DA = (AA)TA
21 > B

—1
B > Y [ N Nz N7y
- > , Soawy; )\ NT Na? N7y

|
N
&8
S | ]
[\
N~
I
N
&‘ Nag|
Neag
N~
I
8
[\
| —
S
[\
N
R
Sy
|
]
N~
-
&‘ Nyl
Neag
N~
I
=
B,
N
R
S|
Nyl |
T g
N~

-
|
A/
q[\D

cov(ag,a1) o

i cov(ag, a1) I o’ 2 -7

Gq



Mini exercise: straight line track-fit

The covariance formula

oy cov(ag, 1) \ o7 2 -7
cov(Gg, G1) 02, - NV[z]\ -7 1

is valid for e.g. a straight line track fit in N detectors of resolution o

Determine the improvements on the slope error o,, by:

a) Doubling the number of detector layers N
within the same interval in

b) Distributing the detector layers
over an interval in x twice as large

c) Buying detectors with measurement uncertainties o
reduced by a factor two

9¢
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Computer exercise straight line trajectory fit

Physics example: A muon track is measured in four layers of streamer tube detectors at x positions of 4., 5., 6. and 7.
(in cm), with a measurement precision for y of 0.5 cm. The goal is to determine its trajectory assuming a straight line.

Macro StraightLineFit.C, accessible at

http : //www.desy.de/obehnke/stat/geanl0/StraightLineFit.C

fits a straight line track trajectory through four measured points.

e Steering parameters in the macro:
— xmin, xmax = Interval of the trajectory displayed

e Output:
— Histogram data (it's of the type TGraphErrors)

— Plots are drawn of the

x fitted histogram with error bands
x error ellipse of the two fitparameters

Tasks:
a) Run the macro as it is by .x StraightLineFit.C and fill the fit results for p0, p1, their errors and correlation into the table below

b) Precision of trajectory: Evaluate (by eye) from the shown error bands at which point roughly the trajectory is known best and
with which precision (fill the results in the table below)

c) Precision of extrapolated trajectory: Evaluate the precision of the extrapolated trajectory at x = 100 (Hint: Change xmax to
large value and run the macro again)

d) Effect of shift of x coordinate origin: Shift all four £V al points in the macro (simply by overwriting by hand) by a constant
value -5.5, set xmin = —4. and xmax = 4. and run the macro again. Fill the fit results in the table. Can you explain why
the correlation of pO and pl has changed?

e) Apply a very precise vertex constraint at the origin: Change N to 5 and add a new first point to the measurement points list

with xVal = 0.0, zErr = 0.0, yVal = 0.0 and yErr = 0.0001 (just by hand). Run the macro again and write down the
fitted results in the table. How much are the parameter errors reduced by adding this extra point?
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Task results sheet

Straight line fit trough four points

p0 =

Task a) | pl =
corr =
Task b) x-best precision =
y-error =
Task ¢) || y-error(z = 100) =
Shifting all x values by -5.5:
Task d) | PV~
pl =
corr =
Adding vertex constraint at x = O:
Task e) 0=
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Mini summary of what we have learnt

e Linear least square problems: y = Aa,
— y is a linear function of the fitparameters a but can be a linear
or nonlinear function of the continuous parameter .

e The normal equatior}s are a powerful tool to soAlve linear least
square fit problems d = (A'V1A)"P AVl cov(d) = (A'V1A)

e Straight line fits are a typical application and there are many
others (e.g. parabolas, higher order polynoms, etc.)



Appendix

Content:

e Proof that x? . for averaging two measurements follows
v -distribution with one degree of freedom

e Linear least square fits: Covariance matrix of fit parameters
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X2 for two measurements with unknown true value

2 (y1 — &)2 (y2 — &)2 ~ Y1 Y2 Giy1 + Gaye : 9
szn 0'% _l_ O_S ) a % _|_ % 0_% _l_ O'% Gl _|_ G2 (Wlt Gz /Oz ))
G1y1 + Gays2) ? (G1y1 + Gay9) ’
Xmin 1 v G1+ Goy + G Y2 Gi1+ Goy
(G2y1 — G2y2))2 ((Gly2 - Glyl))2
= G- G- -
! ( G1+ Gy T2 G1 + Go
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Gng(Gl + Gg) B Gq1-Go o
— (Gl n G2)2 ) (yl - y2) - Gl + GQ ) (yl - y2)
1 9 1
S UG t1)G, Wmv) = o)

2

_ C e A2
A = \5% should follow (errorpropagation!) gauss distribution ~ e~ =
01702

— x? = A? follows 1-dim ? distr.!
— One degree of freedom “sacrificed” for determination of a.

General: n-measurements with one unknown a
— follows 2 distribution with n — 1 degrees of freedom
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Linear least square fits: Covariance Matrix

Proof that Covariance matrix U of fit parameters q is given
by U = H~!

Use Normal Equations:

i= By with B=H AV

Then apply errorpropagation:
—U = BVB' = H'AV-IVV-1AHF!
= H'AVIIAF '=H 'HH'=H!
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