Architectures

Mainly based on

-Kaplan's notes

-"A high-bias, low-variance introduction to Machine Learning for physicists”

-https: / /towardsdatascience.com/transformers-141e32e69591

-Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (Aurélien Géron)

Philipp Englert
Workshop Seminar 2020/2021
Hamburg, 26 January 2021

https://sites.krieger.jhu.edu/jared-kaplan/files/2019/04/ContemporaryMLforPhysicists.pdf
https://arxiv.org/pdf/1803.08823.pdf
https://towardsdatascience.com/transformers-141e32e69591
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

How to design a Neural Network?

» So far: mostly had fully connected, feed-forward NN in mind
» Number of layers? Number of nodes per layer? Activation

functions?

“Non-deep" feedforward
rk

neural networ

Deep neural network

Philipp Englert |

B

EEEEEEEE

Workshop Seminar 2020/2021 |

Hamburg, 26 January 2021 |

Page 2

http://creativecommons.org/licenses/by/4.0/

How to design a Neural Network?

» There's more to it than just that!

> For example:

Recurrent Neural Network structure

O O—

Recurrent Neural Network Feed-Forward Neural Network
2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 3

http://creativecommons.org/licenses/by/4.0/

How to design a Neural Network?

» There's more to it than just that!

» For example:

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A K—M
(5x5) kernel Max-Pooling (5x5) kernel pay-pooling (with
valid padding (2x2) valid padding (2x2) 7. N
T 0
1
3‘ » 2
\l|
\\ /A
INPUT n1 channels n1 channels n2 channels n2channels || 3/ @) 9
(28x28x1) (24x24xn1) (12x12xn1) (8x8xn2) (4x4xn2) \‘.// P
n3 units

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 3

http://creativecommons.org/licenses/by/4.0/

Design Considerations

Design Considerations

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 4

http://creativecommons.org/licenses/by/4.0/

Important design considerations

Can we represent the function we want to learn with this
architecture?

> necessary but not sufficient for choosing a suitable architecture
> usually not a big concern

» Universal Approximation Theorem: NN with > 0 hidden layers
can approximate any continuous, multi-input/multi-output
function with arbitrary accuracy

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 5

http://creativecommons.org/licenses/by/4.0/

Important design considerations

Will the relevant information be able to propagate through
the whole network?

> especially problematic for deep networks

> gradients can vanish or explode
> to help the information flow:

» choose suitable activation function

> initialize weights properly

> ’'whiten’ data, i.e. decorrelate and normalize, such that variance=1
> residual connections

> does the information propagate in a small number of steps?

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 6

http://creativecommons.org/licenses/by/4.0/

Important design considerations

Does the network have suitable symmetries for the problem
of interest?

> choice of architecture biases the distribution of possible NN
parameters

» choose a suitable architecture for the problem right away!

> otherwise: waste of computational capacity by forcing the NN
to learn this information

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 7

http://creativecommons.org/licenses/by/4.0/

Important design considerations

Other considerations

> can the network efficiently 'forget’ irrelevant information?
» can the Neural Network be parallelized?
> ..

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 8

http://creativecommons.org/licenses/by/4.0/

Information propagation

Information propagation

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Activation functions

> relatively little is understood about this subject

> specific choice of activation function is not that important, as
long as it's not 'pathological’

> for deep NN's the activation functions in intermediate layers
should not saturate on both sides to avoid vanishing gradients

12 Sigmoid activation function

1,00 | s e e s e ey
0.8 i
0.6}

0.4+ i
Saturating

0.21 |

0.0

Linear]

) >y 0 2 4
Figure 11-1. Logistic activation function saturation
2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 10

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Activation functions

fo / J@)=z

warew [w={ s
e a1 1= e
B S f(x) = tanh(z) = Hf,.;, =i
» abundance of options: == i skl
A Z AP (P
S.:“‘;:: A |r={s 5 350
;:5:!1"\1' T R
Sattps / S(x) = log.(1+¢")
» default choice: ReLU (no saturation on one side, cheap to

compute)
> leaky ReLU is not very common and does not seem to help
much with training
> identity if you just want to perform a linear transformation
» tanh, sigmoid, etc. if you want outputs in a fixed range

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 11

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening

> for better information propagation: decorrelate the input data
and normalize it ('whitening')

» decorrelation e.g. with Principal Component Analysis (PCA)
> normalization with e.g. Layer Norm or Batch Norm

» smoothens loss landscape —helps with training

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 12

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening - PCA

> j-th principal component: direction of a line that best fits the

data, while being orthogonal to the first i — 1 principal
components

—gl
-8 -6 -4 -2 2 4 10

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 13

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening - PCA
> decorrelation: decompose data in terms of principal components

> can reduce dimensionality by only taking the first n principal
components

6
28 6 -4 —2 2 4 6 10 ‘%
& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 14

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening - Normalization

> also important: activations should follow "reasonable”
distribution (order 1 mean and standard deviation) —
normalize weights or activation functions

» more common: normalizing activation functions

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 15

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening - Normalization
> Activation i in Layer n: X! = ReLU(WUX,_1;+ b")
» Layer norm:

> mean: pu, = LLZ X!, L,: number of neurons in layer n

IZ(X’ in)?

Xu,.

> variance: o2

> normalize: X! —>X’

> modified definition of the Iayer
» Batch norm:

> average over samples in batch for each neuron i
> changes during training
> only fixed after freezing the model (after training)

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 16

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Initialization

> need to initialize weights randomly (following some distribution)

» risk: Var(X!) somehow depends on Var(W7) —if Var(X!) is
too large or too low, gradients could blow up/vanish already in
the beginning of training

> need to choose variance of weight initialization wisely

» common and good choices: Var(W¥) = £, Var(W¥) = 2

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 17

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Residual Connections

> we can let the layers compute X,11 = X, + F(X},) instead of
Xnt1 = F(Xp), where F is some non-trivial function (e.g.
matrix multiplication & activation function)

» can help the information to reach later layers, even if earlier
layers are learning slowly

> helps learning functions close to the identity

> we can also let the information skip several layers, e.g.

weight layer

b'e
identity

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 18

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Example Architectures

Convolutional Neural Networks

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 Januar y 2021 | Page 19

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

The human visual cortex (naively)

» many neurons in the human visual cortex have a small local
receptive field

> receptive fields may overlap
> they collectively cover the whole visual field

> some neurons only react to higher level features, e.g. horizontal
lines or vertical lines

> neurons with the same receptive field can react to different
features

> some neurons react to even more complex features
(combinations of lower level features)

— this inspired Convolutional Neural Networks

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 20

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Convolutional Layers

> neurons in the first convolutional layer are only connected to a
few pixels in a local receptive field

> same goes for the second layer, etc.

> this allows the NN to focus on low level features in the first
layer and on higher level features in the deeper hidden layers

Convolutional
° layer 2

R Convolutional
s ====3
¢ 7

S oL layer 1

Input layer

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 21

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Convolutional Layers
> each neuron in a specific layer has the same weights

> these weights are called convolutional kernel or filter of the layer

Feature Feature
Map 1 bbby Map 2

== Horizontal filter

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 22

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Convolutional Layers

> filters are learned during training

> a layer of neurons with the same weights is called feature map
» a convolutional layer can consist of several feature maps

> a neuron in a specific convolutional layer is connected to the
neurons in its receptive field in all the feature maps of the
previous convolutional layer

> input layers can also consist of several sublayers (e.g. RGB)

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 23

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Convolutional Layers

Convolutional

Feature o layer 2
[ET] wap
y=" ALk ;
Filters : e

/ r 5 V|
: | Convolutional
[~ Map1 1 : layer 1
M Ve |
: o=
v 14
7] Input layer
Channels
Red .

Green
Blue

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 24

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Pooling Layers
> typical CNN: alternates convolutional layers and pooling layers

> a pooling layer is like a convolutional layer that just aggregates
its input neurons

> aggregation functions: e.g. maximum or mean of the input
neurons

> typical CNN-architecture:

Input Convolution Pooling Convolution Pooling Fully connected

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 25

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Example Architectures

Recurrent Architectures

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 Januar y 2021 | Page 26

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

> some tasks require some sort of memory, e.g. sequence
transduction (D language translation, text-to-speech
transformation, ...)

> e.g. when translating a word in a sentence, we need to
remember how we translated the previous words

> solutions in Machine Learning:

— recurrent architectures (RNN, LSTM, ..)
— Convolutional Neural Networks (CNN)
— Attention and the Transformer

> now: recurrent architectures

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 27

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Recurrent Neural Networks (RNN)

» RNNs contain loops that pass a hidden state ('memory’) to the
next iteration of the network:

®» ® ®

= é}—'i}*/\%?

> x; are the inputs of the network A, h; are the outputs

P naive intuition: in a text, x; could be the t-th word in the
original language and h; the t-th translated word

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 28

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Recurrent Neural Networks (RNN)
» common implementation: sequence-to-sequence translation:

1. encode original sentence
2. decode to translated sentence

"Comment" "allez-vous"

@@ »@»@@»@M-@

> side note:
> usually in applications use embedding matrices to reduce
dimensionality of the vocabulary
» project the vocabulary to lower dimensional embedding space
(vector space that still captures a lot of the meaning and semantic

information, e.g. "king - man + woman = queen”)
2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 29

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Recurrent Neural Networks (RNN)
Problems:

» RNN's are not very good at dealing with long-term
dependencies (i.e. if the relevant information is far from the
point where it is needed)

> all the 'memory’ is passed in one hidden state at each step

> the longer the chain, the more likely it is the relevant
information is lost along the chain

» improvement over regular RNN's: Long Short-Term Memory
(LSTM)

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 30

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Long Short-Term Memory (LSTM)

® ® ®
t t t

n [HaAD
© ® ©

» LSTM's have an additional hidden state, the cell-state

> series of operations between hidden state and cell-state
— selectively remember important and forget unimportant

information
2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 31

v

v

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Long Short-Term Memory (LSTM)

® ® ()
t t t

o [TeAL
© ® ©

LSTM's still have some problems:

v

v

> if the sentences are too long, important information may still be
lost

> sequential computation — no parallelization

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 32

http://creativecommons.org/licenses/by/4.0/

Attention

Example Architectures

Attention and the Transformer

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 Januar y 2021 | Page 33

http://creativecommons.org/licenses/by/4.0/

Attention

>

>

(©me

the problem of lost long-term information can be addressed
using attention

idea: a word in a translated sentence could depend on any word
in the original sentence

— keep all of them as an input for each translated word but
weight them by their importance:

x; — 0i(Q, K)x;, where

x;: input words, 0;(Q, K): weights, K: key, Q: query

e.g. for the translation of a verb (query), consider the gender of
the subject and the verb in the original language (keys match)
and ignore the other words (keys don’t match)

concept of attention is much more general than just for
language translation

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 34

http://creativecommons.org/licenses/by/4.0/

Attention

Example: attention in sequence-to-sequence models

| am a student

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage

Decoding Stage

Attention Attention Attention Attention

Epcodey Efcodey Encocey Decoder Decoder Decoder Decoder

DI SLU GLL RNN RNN RNN RNN

Je suis étudiant

Encoder
hidden I am a student

state

Je hidden hidden
state #1 state #1
A hidden hidden
suis e E

étudiant [F

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 35

http://creativecommons.org/licenses/by/4.0/

Self-Attention

> Self-Attention: keys K; and queries Q; are determined by the
input Xj: K,' = WKX,', Q,' = WQX,', V, = W\/X,',
note: x; are vectors in the embedding space, Wi g v matrices
that map the x; to an even lower dimensional space

> output: z :softmaxj(Q,- K;/\/d)V;, where
softmax;(ajj) = Z saco di dim(V;) = dim(K;) = dim(Q;)

2 Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 36

http://creativecommons.org/licenses/by/4.0/

The Transformer

> consists of several encoders and decoders that each have
multi-headed attention, i.e. they can pay attention to different
kinds of information

OUTPUT | | am a student
4
N

_J

-

.
1

INPUT | Je suis étudiant

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 37 @

http://creativecommons.org/licenses/by/4.0/

The Transformer

> encoder:
Encooe 4 4
(Feed Forward j
f f f
= [=T =
t t t
[Self-Attention j
+ + +
x [x: I x: [
o suis étudiant
> decoder:
DECODER f
(Feed Forward)
4
(Encoder-Decoder Attention)
> 7y
(Self-Attention)

i

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 38

http://creativecommons.org/licenses/by/4.0/

The Transformer

> attention mechanism solves the problem of long-term
dependencies

> the feed forward NN's are independent of each other — can be
parallelized

> this is the state-of-the-art technique that is used for sequence
transduction

& Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 39

http://creativecommons.org/licenses/by/4.0/

Attention

Thank you for your
Attention

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 Januar y 2021 | Page 40

http://creativecommons.org/licenses/by/4.0/

