
Architectures.

Mainly based on

-Kaplan’s notes
-”A high-bias, low-variance introduction to Machine Learning for physicists”
-https://towardsdatascience.com/transformers-141e32e69591
-Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (Aurélien Géron)

Philipp Englert

Workshop Seminar 2020/2021

Hamburg, 26 January 2021

https://sites.krieger.jhu.edu/jared-kaplan/files/2019/04/ContemporaryMLforPhysicists.pdf
https://arxiv.org/pdf/1803.08823.pdf
https://towardsdatascience.com/transformers-141e32e69591
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

How to design a Neural Network?
I So far: mostly had fully connected, feed-forward NN in mind
I Number of layers? Number of nodes per layer? Activation

functions?

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 2

http://creativecommons.org/licenses/by/4.0/

How to design a Neural Network?

I There’s more to it than just that!
I For example:

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 3

http://creativecommons.org/licenses/by/4.0/

How to design a Neural Network?

I There’s more to it than just that!
I For example:

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 3

http://creativecommons.org/licenses/by/4.0/

Design Considerations

Design Considerations

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 4

http://creativecommons.org/licenses/by/4.0/

Important design considerations

Can we represent the function we want to learn with this
architecture?

I necessary but not sufficient for choosing a suitable architecture
I usually not a big concern
I Universal Approximation Theorem: NN with > 0 hidden layers

can approximate any continuous, multi-input/multi-output
function with arbitrary accuracy

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 5

http://creativecommons.org/licenses/by/4.0/

Important design considerations

Will the relevant information be able to propagate through
the whole network?

I especially problematic for deep networks
I gradients can vanish or explode
I to help the information flow:

I choose suitable activation function
I initialize weights properly
I ’whiten’ data, i.e. decorrelate and normalize, such that variance=1
I residual connections

I does the information propagate in a small number of steps?

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 6

http://creativecommons.org/licenses/by/4.0/

Important design considerations

Does the network have suitable symmetries for the problem
of interest?

I choice of architecture biases the distribution of possible NN
parameters

I choose a suitable architecture for the problem right away!
I otherwise: waste of computational capacity by forcing the NN

to learn this information

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 7

http://creativecommons.org/licenses/by/4.0/

Important design considerations

Other considerations

I can the network efficiently ’forget’ irrelevant information?
I can the Neural Network be parallelized?
I …

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 8

http://creativecommons.org/licenses/by/4.0/

Information propagation

Information propagation

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 9

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Activation functions
I relatively little is understood about this subject
I specific choice of activation function is not that important, as

long as it’s not ’pathological’
I for deep NN’s the activation functions in intermediate layers

should not saturate on both sides to avoid vanishing gradients

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 10

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Activation functions

I abundance of options:

I default choice: ReLU (no saturation on one side, cheap to
compute)

I leaky ReLU is not very common and does not seem to help
much with training

I identity if you just want to perform a linear transformation
I tanh, sigmoid, etc. if you want outputs in a fixed range

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 11

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening
I for better information propagation: decorrelate the input data

and normalize it (’whitening’)
I decorrelation e.g. with Principal Component Analysis (PCA)
I normalization with e.g. Layer Norm or Batch Norm
I smoothens loss landscape →helps with training

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 12

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening - PCA
I i-th principal component: direction of a line that best fits the

data, while being orthogonal to the first i − 1 principal
components

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 13

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening - PCA
I decorrelation: decompose data in terms of principal components
I can reduce dimensionality by only taking the first n principal

components

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 14

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening - Normalization
I also important: activations should follow ”reasonable”

distribution (order 1 mean and standard deviation) →
normalize weights or activation functions

I more common: normalizing activation functions

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 15

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Whitening - Normalization
I Activation i in Layer n: X i

n = ReLU(W ijXn−1,j + b i)
I Layer norm:

I mean: µn = 1
Ln

∑
i X i

n, Ln: number of neurons in layer n
I variance: σ2

n = 1
Ln

∑
i(X i

n − µn)
2

I normalize: X i
n → X̂ i

n =
X i

n−µn
σn

I modified definition of the layer
I Batch norm:

I average over samples in batch for each neuron i
I changes during training
I only fixed after freezing the model (after training)

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 16

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Initialization
I need to initialize weights randomly (following some distribution)
I risk: Var(X i

n) somehow depends on Var(W ij) →if Var(X i
n) is

too large or too low, gradients could blow up/vanish already in
the beginning of training

I need to choose variance of weight initialization wisely
I common and good choices: Var(W ij) = 2

Ln
, Var(W ij) = 2

Ln−1

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 17

http://creativecommons.org/licenses/by/4.0/

Information Propagation

Residual Connections
I we can let the layers compute Xn+1 = Xn + F (Xn) instead of

Xn+1 = F (Xn), where F is some non-trivial function (e.g.
matrix multiplication & activation function)

I can help the information to reach later layers, even if earlier
layers are learning slowly

I helps learning functions close to the identity
I we can also let the information skip several layers, e.g.

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 18

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Example Architectures
-

Convolutional Neural Networks

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 19

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

The human visual cortex (naively)
I many neurons in the human visual cortex have a small local

receptive field
I receptive fields may overlap
I they collectively cover the whole visual field
I some neurons only react to higher level features, e.g. horizontal

lines or vertical lines
I neurons with the same receptive field can react to different

features
I some neurons react to even more complex features

(combinations of lower level features)
→ this inspired Convolutional Neural Networks

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 20

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Convolutional Layers
I neurons in the first convolutional layer are only connected to a

few pixels in a local receptive field
I same goes for the second layer, etc.
I this allows the NN to focus on low level features in the first

layer and on higher level features in the deeper hidden layers

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 21

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Convolutional Layers
I each neuron in a specific layer has the same weights
I these weights are called convolutional kernel or filter of the layer

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 22

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Convolutional Layers
I filters are learned during training
I a layer of neurons with the same weights is called feature map
I a convolutional layer can consist of several feature maps
I a neuron in a specific convolutional layer is connected to the

neurons in its receptive field in all the feature maps of the
previous convolutional layer

I input layers can also consist of several sublayers (e.g. RGB)

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 23

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Convolutional Layers

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 24

http://creativecommons.org/licenses/by/4.0/

Convolutional Neural Networks (CNN)

Pooling Layers
I typical CNN: alternates convolutional layers and pooling layers
I a pooling layer is like a convolutional layer that just aggregates

its input neurons
I aggregation functions: e.g. maximum or mean of the input

neurons
I typical CNN-architecture:

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 25

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Example Architectures
-

Recurrent Architectures

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 26

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

I some tasks require some sort of memory, e.g. sequence
transduction (⊃ language translation, text-to-speech
transformation, …)

I e.g. when translating a word in a sentence, we need to
remember how we translated the previous words

I solutions in Machine Learning:
→ recurrent architectures (RNN, LSTM, …)
→ Convolutional Neural Networks (CNN)
→ Attention and the Transformer

I now: recurrent architectures

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 27

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Recurrent Neural Networks (RNN)
I RNNs contain loops that pass a hidden state (’memory’) to the

next iteration of the network:

I xt are the inputs of the network A, ht are the outputs
I naive intuition: in a text, xt could be the t-th word in the

original language and ht the t-th translated word

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 28

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Recurrent Neural Networks (RNN)
I common implementation: sequence-to-sequence translation:

1. encode original sentence
2. decode to translated sentence

I side note:
I usually in applications use embedding matrices to reduce

dimensionality of the vocabulary
I project the vocabulary to lower dimensional embedding space

(vector space that still captures a lot of the meaning and semantic
information, e.g. ”king - man + woman = queen”)

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 29

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Recurrent Neural Networks (RNN)
Problems:
I RNN’s are not very good at dealing with long-term

dependencies (i.e. if the relevant information is far from the
point where it is needed)

I all the ’memory’ is passed in one hidden state at each step
I the longer the chain, the more likely it is the relevant

information is lost along the chain
I improvement over regular RNN’s: Long Short-Term Memory

(LSTM)

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 30

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Long Short-Term Memory (LSTM)

I LSTM’s have an additional hidden state, the cell-state
I series of operations between hidden state and cell-state

→ selectively remember important and forget unimportant
information

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 31

http://creativecommons.org/licenses/by/4.0/

Recurrent Architectures

Long Short-Term Memory (LSTM)

LSTM’s still have some problems:
I if the sentences are too long, important information may still be

lost
I sequential computation → no parallelization

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 32

http://creativecommons.org/licenses/by/4.0/

Attention

Example Architectures
-

Attention and the Transformer

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 33

http://creativecommons.org/licenses/by/4.0/

Attention

I the problem of lost long-term information can be addressed
using attention

I idea: a word in a translated sentence could depend on any word
in the original sentence
→ keep all of them as an input for each translated word but
weight them by their importance:
xi → σi(Q,K)xi , where
xi : input words, σi(Q,K): weights, K : key, Q: query

I e.g. for the translation of a verb (query), consider the gender of
the subject and the verb in the original language (keys match)
and ignore the other words (keys don’t match)

I concept of attention is much more general than just for
language translation

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 34

http://creativecommons.org/licenses/by/4.0/

Attention

Example: attention in sequence-to-sequence models

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 35

http://creativecommons.org/licenses/by/4.0/

Self-Attention

I Self-Attention: keys Ki and queries Qi are determined by the
input xi : Ki = WK xi , Qi = WQxi , Vi = WV xi ,
note: xi are vectors in the embedding space, WK ,Q,V matrices
that map the xi to an even lower dimensional space

I output: zi = softmaxj(Qi · Kj/
√

d)Vj , where
softmaxj(αij) =

eαij∑
k eαik , d : dim(Vi) = dim(Ki) = dim(Qi)

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 36

http://creativecommons.org/licenses/by/4.0/

The Transformer

I consists of several encoders and decoders that each have
multi-headed attention, i.e. they can pay attention to different
kinds of information

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 37

http://creativecommons.org/licenses/by/4.0/

The Transformer

I encoder:

I decoder:

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 38

http://creativecommons.org/licenses/by/4.0/

The Transformer

I attention mechanism solves the problem of long-term
dependencies

I the feed forward NN’s are independent of each other → can be
parallelized

I this is the state-of-the-art technique that is used for sequence
transduction

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 39

http://creativecommons.org/licenses/by/4.0/

Attention

Thank you for your
Attention

Philipp Englert | Workshop Seminar 2020/2021 | Hamburg, 26 January 2021 | Page 40

http://creativecommons.org/licenses/by/4.0/

