Generative Models and Physics Applications Sascha Diefenbacher,

S. Diefenbacher

Generative Models

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Literature

- Further Reading:
 - Mehta et. al., A high-bias, low-variance introduction to Machine Learning for physicists, 1803.08823
 - Goodfellow et. al., Generative Adversarial Networks 1406.2661

 - Arjovsky et. al., Wasserstein GAN, 1701.07875 • Gulrajani et. al., Improved Training of Wasserstein GANs 1704.00028

Classification High Dim. Data

S. Diefenbacher

S. Diefenbacher

Generative Models

S. Diefenbacher

S. Diefenbacher

Latent Space Noise

S. Diefenbacher

Generation

Latent Space Noise

S. Diefenbacher

- Classification:
 - Easy to interpret model outputs
 - Model performance simple to measure
 - Accuracy, Area Under Curve, ...

- Classification:
 - Easy to interpret model outputs
 - Model performance simple to measure
 - Accuracy, Area Under Curve, ...
 - Wide range of available loss functions
 - Only needs to compare predictions with true labels
 - Common example: Cross-Entropy

- Generative:
 - How do you measure the model performance?

How is this expressed mathematically (and differentiable)

- Generative:
 - How do you measure the model performance?

• How is this expressed mathematically (and differentiable)

http://thesecatsdonotexist.com

Generation Difficulties

- Image Set:

S. Diefenbacher

Generative Models

Does the new set have the same properties as the data?

Generation Difficulties

- Image Set:

S. Diefenbacher

Does the new set have the same properties as the data?

Generated Data:

09.02.2021

AutoEncoder

Encoding function E(x)=z map high dimensional data X to low dimensional latent space Z

AutoEncoder

- Encoding function E(x)=z map high dimensional data X to low dimensional latent space Z
- Decoding function D(z)=x map latent space Z back to data X

AutoEncoder

- Encoding function E(x)=z map high dimensional data X to low dimensional latent space Z
- Decoding function D(z)=x map latent space Z back to data X Compare Input and Output pixel by pixel with mean squared error

Generative Models

• Sample for Z and pass it to $D(Z) \rightarrow C$ Generate new samples

• Sample for Z and pass it to $D(Z) \rightarrow C$ Generate new samples Problem: Need regularised later space to sample form Variational AutoEncoder

Variational AutoEncoder

• Latent space: Series of Gaussians, regularised match N(μ =0, σ =1)

Variational AutoEncoder

 Using Gaussians lets us use Kullback–Leibler divergence $\sum \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$ i=1

• Latent space: Series of Gaussians, regularised match N(μ =0, σ =1)

Variational AutoEncoder

- - Using Gaussians lets us use Kullback–Leibler divergence $\sum \sigma_i^2 + \mu_i^2 - \log(\sigma_i) - 1$ i=1
- Compare Input and Output again using MSE

S. Diefenbacher

• Latent space: Series of Gaussians, regularised match N(μ =0, σ =1)

Generative Adversarial Network High Dim. Data

Latent Space Noise

S. Diefenbacher

- Generator Network G(z)=x
 - Maps noise Z to Data X

- Generator Network G(z)=x
 - Maps noise Z to Data X
- Discriminator D(G(z)) and D(x)
 - Learns difference between real and fake

$$L = BCE(p(real), 1) + BCE(p(fake), 0)$$

Generative Models

- Generator Network G(z)=x
 - Maps noise Z to Data X
- Discriminator D(G(z)) and D(x)
 - Learns difference between real and fake
- D(G(z)) is differentiable function measuring performance

$$L = BCE(p(real), 1) + BCE(p(fake), 0)$$

Generative Models

- Generator Network G(z)=x
 - Maps noise Z to Data X
- Discriminator D(G(z)) and D(x)
 - Learns difference between real and fake
- D(G(z)) is differentiable function measuring performance
- Use D(G(z)) as loss to update G

Generative Models

S. Diefenbacher

Code Example

(a)

(b)

- Guides Generated distribution to match real distribution

Generative Adversarial Network

Goodfellow et al.- arXiv:1406.2661

Discriminator of GAN approximates Jensen Shannon Divergence

- JSD only based on overlap
 - Problem for very separated distributions
 - Vanishing Gradient
- Alternative to JSE: Earth Mover Distance (aka Wasserstein Distance)

Arjovsky et al.- arXiv:1701.07875

Generative Models

- Earth Mover Distance
- Optimal transport problem
- Most energy efficient way to match two distributions
 - Energy defined as (mass times distance)

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

- Earth Mover Distance
- Optimal transport problem
- Most energy efficient way to match two distributions
 - Energy defined as (mass times distance)

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

- Earth Mover Distance
- Optimal transport problem
- Most energy efficient way to match two distributions
 - Energy defined as (mass times distance)

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

- Earth Mover Distance
- Optimal transport problem $\frac{1}{2}$
- Most energy efficient way to match two distributions
 - Energy defined as (mass times distance)
- Sensitive to distance

https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

Generative Models

- Earth Mover Distance Direct calculation not feasible $W(p_r, p_g) = \frac{1}{K} \sup_{\|f\|_{L} \leq K} \mathbb{E}_{x \sim p_r}[f(x)] - \mathbb{E}_{x \sim p_g}[f(x)]$
 - Gives upper bound, but needs K-Lipschitz continuous function f

 - Use Critic to estimate EMD

 $W(p_r, p_g) = \max_{x \sim p_r} \mathbb{E}_{x \sim p_r}[f_w(x)]$ w∈W

$$-\mathbb{E}_{z\sim p_r(z)}[f_w(g_\theta(z))]$$

- JSD only based on overlap
 - Problem for very separated distributions
 - Vanishing Gradient
- Alternative to JSE: Earth Mover Distance (aka Wasserstein Distance)
 - Gradient no longer vanishes

Arjovsky et al.- arXiv:1701.07875

Generative Models

Wasserstein GAN

S. Diefenbacher

Code Example

- - simulation takes significant time and resources

Monte Carlo simulations are invaluable part of particle physics

Detailed, full (matrix element, hadronisation, detector effects)

38

- Monte Carlo simulations are invaluable part of particle physics
 - Detailed, full (matrix element, hadronisation, detector effects) simulation takes significant time and resources
- Increasing collider luminosities calls for more Monte Carlo data

- Monte Carlo simulations are invaluable part of particle physics
 - Detailed, full (matrix element, hadronisation, detector effects) simulation takes significant time and resources
- Increasing collider luminosities calls for more Monte Carlo data Need a way to speed up simulations

- Monte Carlo simulations are invaluable part of particle physics
 - Detailed, full (matrix element, hadronisation, detector effects) simulation takes significant time and resources
- Increasing collider luminosities calls for more Monte Carlo data
 - Need a way to speed up simulations
- Train Generative Network to emulate simulators
 - Networks are significantly faster than classical methods

Generative Models in Physics Training Real data, Data **Discr. N** points Noise-Generator

S. Diefenbacher

Generative Models

Potential Problem Info(N real points) Info(M GANed points)

S. Diefenbacher

Potential Problem Info(N real points) = Info(M GANed points) Little advantage to be gained from GAN

Potential Problem Info(N real points) = Info(M GANed points) Little advantage to be gained from GAN Info(N real points) < Info(M GANed points)

Potential Problem Little advantage to be gained from GAN GAN can speed up simulations

Info(N real points) = Info(M GANed points) Info(N real points) < Info(M GANed points)

Potential Problem Little advantage to be gained from GAN GAN can speed up simulations Check with small scale test

Info(N real points) = Info(M GANed points) Info(N real points) < Info(M GANed points)

Butter et al.: GANplifying Event Samples: 2008.06545

1-D Toy Model

 Camel back function: double peak Gaussian $p(X) = \frac{1}{2}(N_{-4,1}(x) + N_{4,1}(x))$ 0.09 0.08 0.07 0.06 0.05 (<u>×</u> 0.04 0.03 0.02 0.01

0.00

-6

-8

-4

S. Diefenbacher

Quantiles

 Need measurement how well function is described

Generative Models

Quantiles

- Need measurement how well function is described
- Define 10 quantiles on true distribution

Generative Models

Quantiles

- Need measurement how well function is described
- Define 10 quantiles on true distribution
- Each quantile contains equal probability

Generative Models

S. Diefenbacher

Generative Models

S. Diefenbacher

Generative Models

S. Diefenbacher

Generative Models

S. Diefenbacher

Generative Models

S. Diefenbacher

Generative Models

S. Diefenbacher

Generative Models

S. Diefenbacher

Generative Models

S. Diefenbacher

Generative Models

S. Diefenbacher

Generative Models

Parameter Fit

• Gives upper performance benchmark

Generative Models

Parameter Fit

- Gives upper performance benchmark
- Fit 5 parameter camel back function to training samples

$$p(X) = a N_{\mu_1,\sigma_1}(x) + (1-a)N_{\mu_2,\sigma_2}(x)$$

Generative Models

Parameter Fit

- Gives upper performance benchmark
- Fit 5 parameter camel back function to training samples

$$p(X) = a N_{\mu_1,\sigma_1}(x) + (1-a)N_{\mu_2,\sigma_2}(x)$$

 Analytically calculate integral for each quantile

Generative Models

Train GAN on 100 data points from training sample

Train GAN on 100 data points from training sample

S. Diefenbacher

- Train GAN on 100 data points from training sample
- Regularisation through
 - Dropout
 - Added training noise
 - Batch-statistics

- Generate $O(10^7)$ data points using GAN
- Calculate fraction of points in each quantile
- Calculate Quantile MSE

Generative Models

 Calculate MSE for 100 independent training samples

Generative Models

- Calculate MSE for 100 independent training samples
- Train GANs on samples and calculate MSE on for these

Generative Models

- Calculate MSE for 100 independent training samples
- Train GANs on samples and calculate MSE for these
- Reference lines for 200 and 300 samples

Generative Models

- Calculate MSE for 100 independent training samples
- Train GANs on samples and calculate MSE for these
- Reference lines for 200 and 300 samples
- Calculate MSE for fits on training samples

Generative Models

- GAN describes distribution better than training data
- Needs 10,000 GANed points to match 150 true points

Generative Models

How is this possible?

Generative Models

- How is this possible?
- In terms of information:
 - sample: only data points
 - fit: data + true function
 - GAN: data + smooth, continuous function

Generative Models

- How is this possible?
- In terms of information:
 - sample: only data points
 - fit: data + true function
 - GAN: data + smooth, continuous function
- This allows the GAN to interpolate

Generative Models

Statistical Properties

- For interpolatable dataset:
- Info(N real points) < Info(M GANed points) GANs have potential to amplify dataset Highly promising for application as simulation
- accelerators

Butter et al.: GANplifying Event Samples: 2008.06545

Simulator	Hardware	Batchsize	Time/shower*
GEANT4	CPU	N/A	4082 ± 170 ms

* average time for 10-100 GeV showers

S. Diefenbacher

Shower Simulation

- Classically done using Geant4
- First principle simulation modelling individual particle interactions
- Very computationally expensive
- Timing even more significant for higher luminosities
- Significant resources needed

Calorimeters

http://ihp-lx.ethz.ch/CompMethPP/lhc/pictures/

- Homogeneous Calorimeter
 - Made up of single active block
 - Great energy resolution
 - No spatial information

http://ihp-lx.ethz.ch/CompMethPP/lhc/pictures/

- Homogeneous Calorimeter
 - Made up of single active block
 - Great energy resolution
 - No spatial information

- Sampling Calorimeter
 - Alternating passive and active layers
 - Only part of energy directly observed
 - Maintains spacial structure

ILD Calorimeter

S. Diefenbacher

 International Large Detector (ILD) Detector for International Linear Collider (ILC)

ILD Calorimeter

S. Diefenbacher

- International Large Detector (ILD)
 - Detector for International Linear Collider (ILC)
- ILD electromagnetic calorimeter
 - Highly granular sampling calorimeter
 - Active silicon, passive tungsten
 - 30 layers, 5mm x 5mm cells

S. Diefenbacher

Generative Models

Buhmann et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed: 2005.05334

 Initial VAE tests on 2D version of Data Mean Squared Error to compare input and reconstruction

- Initial VAE tests on 2D version of Data

 - Mean Squared Error to compare input and reconstruction Unable to reproduce outer hits

S. Diefenbacher

Generative Models

MSE between two random sparse images is larger than between random and empty

- random and empty
- For outer shower hits:
 - Presence more important than exact position
- Needs more fitting reconstruction loss than MSE

MSE between two random sparse images is larger than between

Combines VAE and GAN ideas

- Combines VAE and GAN ideas
 - Enhances pixel wise Mean Squared Error loss with GAN-like adversarial network

- Combines VAE and GAN ideas
 - Enhances pixel wise Mean Squared Error loss with GAN-like adversarial network
 - Significant improvement in generated shower quality

Bounded Information Bottleneck AutoEncoder

- Further expansion of the VAE-GAN structure
- Critic network that judges shower quality
- Second critic that judges reconstruction

Slava Voloshynovskiy et al.: Information bottleneck through variational glasses: 1912.00830

Final Post Processor Network for fine tuning

S. Diefenbacher

GAN

S. Diefenbacher

Results

WGAN

BIB-AE

Generative Models

Buhmann et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed: 2005.05334

S. Diefenbacher

Differential Distributions

Buhmann et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed: 2005.05334

S. Diefenbacher

Differential Distributions

S. Diefenbacher

Generative Models

Differential Distributions

Buhmann et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed: 2005.05334

Linearity and Resolution*

S. Diefenbacher

Generative Models

* actually not the ECAL resolution as not correction for sampling fraction variation performed

Correlations

$m_{1,x}$	1.00			
$m_{1,y}$	0.26	1.00		
$m_{1,z}$	-0.11	-0.00	1.00	
$m_{2,x}$	-0.12	-0.02	-0.12	1.
$m_{2,y}$	0.05	0.16	-0.05	0.
$m_{2,z}$	0.07	0.00	-0.23	-0
$E_{\rm vis}$	0.20	0.30	0.28	-0
$E_{\rm inc}$	0.19	0.28	0.38	-0
$n_{ m hit}$	0.22	0.31	0.24	-0
$E_1/E_{\rm vis}$	0.11	-0.03	-0.95	0.
$E_2/E_{\rm vis}$	-0.04	0.10	0.45	0.
$E_3/E_{\rm vis}$	-0.11	-0.05	0.92	-0
	$m_{1,x}$	$m_{1,y}$	$m_{1,z}$	m_{o}

Geant4

S. Diefenbacher

BIB-AE PP

Correlations

Geant4 - GAN

	$m_{1,x}$	$m_{1, y}$	$m_{1,z}$	200
$E_3/E_{\rm vis}$	0.18	0.13	0.00	-0
$E_2/E_{\rm vis}$	0.17	0.25	-0.01	0
$E_1/E_{\rm vis}$	-0.28	-0.30	0.00	0
$n_{ m hit}$	0.25	0.19	-0.14	0
$E_{\rm inc}$	0.25	0.20	-0.05	0
$E_{\rm vis}$	0.23	0.19	-0.06	0
$m_{2,z}$	-0.02	-0.15	-0.33	-0
$m_{2,y}$	-0.32	-0.56	-0.17	-0
$m_{2,x}$	-0.26	-0.47	-0.44	0
$m_{1,z}$	0.25	0.24	0.00	
$m_{1,y}$	-0.33	0.00		
$m_{1,x}$	0.00			

S. Diefenbacher

Geant4 - WGAN

Geant4 - BIB-AE PP

	$m_{1,x}$	$m_{1,y}$	$m_{1,z}$	$m_{2,x}$	$m_{2,y}$	$m_{2,z}$	$E_{ m vis}$	$E_{ m inc}$	$n_{ m hit}$	$E_1/E_{ m vis}$	$E_2/E_{ m vis}$	F_{0}/F_{min}
$E_3/E_{\rm vis}$	0.04	0.03	0.01	-0.21	-0.21	-0.26	-0.14	-0.10	-0.16	0.02	-0.32	0.0
$E_2/E_{\rm vis}$	-0.09	-0.09	-0.33	-0.08	-0.03	0.37	0.11	0.07	0.12	0.23	0.00	
$E_1/E_{\rm vis}$	0.05	0.04	0.02	0.27	0.23	0.00	-0.01	-0.04	0.02	0.00		
$n_{ m hit}$	-0.28	-0.29	-0.09	0.21	0.15	-0.07	-0.00	-0.01	0.00			
$E_{\rm inc}$	-0.26	-0.26	-0.03	0.09	0.03	-0.17	-0.01	0.00				
$E_{\rm vis}$	-0.27	-0.28	-0.07	0.13	0.07	-0.15	0.00					
$m_{2,z}$	-0.01	0.01	-0.12	0.26	0.20	0.00						
$m_{2,y}$	-0.02	-0.17	-0.24	-0.16	0.00							
$m_{2,x}$	0.13	0.03	-0.26	0.00								
$m_{1,z}$	-0.01	-0.01	0.00									
$m_{1,y}$	-0.26	0.00										
$m_{1,x}$	0.00											

Generative Models

Computation Time

- For 10-100 GeV showers:
 - 3 Orders of magnitude speedup compared to GEANT4

Simulator	Hardware	Batchsize	Time/shower	Speedup
GEANT4	CPU	N/A	4082 ± 170 ms	_
BIB-AE	CPU	1	426.3 ± 3.6 ms	x10
BIB-AE	GPU V100	1	3.19 ± 0.01 ms	x1279
BIB-AE	GPU V100	100	1.42 ± 0.01 ms	x2874

S. Diefenbacher

