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• Further Reading:

• Mehta et. al., A high-bias, low-variance introduction to 

Machine Learning for physicists, 1803.08823

• Goodfellow et. al., Generative Adversarial Networks 

1406.2661

• Arjovsky et. al., Wasserstein GAN, 1701.07875

• Gulrajani et. al., Improved Training of Wasserstein GANs 

1704.00028
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Choice of Loss Function
• Classification:

• Easy to interpret model outputs

• Model performance simple to measure

• Accuracy, Area Under Curve, …


• Wide range of available loss functions

• Only needs to compare predictions with true labels

• Common example: Cross-Entropy
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Choice of Loss Function
• Generative:

• How do you measure the model performance?

• How is this expressed mathematically (and differentiable)
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http://thesecatsdonotexist.com
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• Image Set:

• Does the new set have the same properties as the data?
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Training  
Data:

Generated  
Data:

Generation Difficulties
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AutoEncoder

•Encoding function E(x)=z map high dimensional data X to low 
dimensional latent space Z

•Decoding function D(z)=x map latent space Z back to data X 

•Compare Input and Output pixel by pixel with mean squared error
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AutoEncoder

Z

•Sample for Z and pass it to D(Z)        Generate new samples
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AutoEncoder

Z

•Sample for Z and pass it to D(Z)        Generate new samples

•Problem: Need regularised later space to sample form 

     Variational AutoEncoder
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•Latent space: Series of Gaussians, regularised match N(μ=0, σ=1)

•Using Gaussians lets us use Kullback–Leibler divergence

Variational AutoEncoder

•Compare Input and Output again using MSE
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Generative Adversarial Network
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•Generator Network G(z)=x

•Maps noise Z to Data X 

•Discriminator D(G(z)) and D(x)

•Learns difference between 

real and fake 

•D(G(z)) is differentiable function 

measuring performance

•Use D(G(z)) as loss to update G
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Generative Adversarial Network
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Code Example
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Goodfellow et al.- arXiv:1406.2661

Generative Adversarial Network
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•Discriminator of GAN approximates Jensen Shannon Divergence

•Guides Generated distribution to match real distribution
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Wasserstein GAN
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•JSD only based on overlap

•Problem for very 

separated distributions

•Vanishing Gradient

•Alternative to JSE: Earth 

Mover Distance (aka 
Wasserstein Distance)

Arjovsky et al.- arXiv:1701.07875
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https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

•Earth Mover Distance

•Optimal transport problem

•Most energy efficient way 

to match two distributions

•Energy defined as  

(mass times distance) 
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•Earth Mover Distance

•Optimal transport problem

•Most energy efficient way 

to match two distributions

•Energy defined as  

(mass times distance) 
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Wasserstein GAN
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https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

•Earth Mover Distance

•Optimal transport problem

•Most energy efficient way 

to match two distributions

•Energy defined as  

(mass times distance) 

•Sensitive to distance
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•Earth Mover Distance

•Direct calculation not feasible 
 

•Gives upper bound, but needs K-Lipschitz continuous function f
•Constrain Discriminator to fulfil this requirement        Critic

•Use Critic to estimate EMD

Wasserstein GAN

!35



09.02.2021S. Diefenbacher Generative Models

Wasserstein GAN
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•JSD only based on overlap

•Problem for very separated 

distributions

•Vanishing Gradient

•Alternative to JSE: Earth 

Mover Distance (aka 
Wasserstein Distance)

•Gradient no longer vanishes

Arjovsky et al.- arXiv:1701.07875
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Wasserstein GAN
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Code Example
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Generative Models in Physics
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• Monte Carlo simulations are invaluable part of particle physics

• Detailed, full (matrix element, hadronisation, detector effects) 

simulation takes significant time and resources 

• Increasing collider luminosities calls for more Monte Carlo data 

• Need a way to speed up simulations


• Train Generative Network to emulate simulators 

• Networks are significantly faster than classical methods
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Real data, 
N points Noise

Training 
Data

Generator

Discr. Real/ 
Fake

Noise

Training 
Data

Generator

Discr. Real/ 
Fake

GANed data, 
M >> N points

Generative Models in Physics
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Info(N real points) Info(M GANed points) =
Little advantage to be gained from GAN

Info(N real points) Info(M GANed points) <
GAN can speed up simulations

Check with small scale test

Potential Problem

!48

Butter et al.: GANplifying Event Samples: 2008.06545
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1-D Toy Model
• Camel back function: double peak Gaussian 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p(X) =
1

2
(N�4,1(x) +N4,1(x))
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Quantiles
• Need measurement how well 

function is described

• Define 10 quantiles on true 

distribution

• Each quantile contains equal 

probability

!52
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Training set: 100 points
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How well is the distribution described?
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Introduction

!61

How well is the distribution described?

Quantile MSE = 0.0005



09.02.2021S. Diefenbacher Generative Models

• Gives upper performance 
benchmark

Parameter Fit
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• Gives upper performance 
benchmark


• Fit 5 parameter camel back 
function to training samples 
 
 

Parameter Fit
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p(X) = a Nµ1,�1(x)

+(1� a)Nµ2,�2(x)
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• Gives upper performance 
benchmark


• Fit 5 parameter camel back 
function to training samples 
 
 

• Analytically calculate integral 
for each quantile

Parameter Fit
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p(X) = a Nµ1,�1(x)

+(1� a)Nµ2,�2(x)
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Generative Network
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• Train GAN on 100 data points from training sample

Generative Network
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• Regularisation through

• Dropout

• Added training noise

• Batch-statistics
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• Generate             data points 
using GAN


• Calculate fraction of points in 
each quantile


• Calculate Quantile MSE

Generative Network
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O(107)
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• Calculate MSE for 100 
independent training samples

Generative Network
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• Train GANs on samples and 
calculate MSE on for these
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Generative Network
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• Calculate MSE for 100 
independent training samples


• Train GANs on samples and 
calculate MSE for these


• Reference lines for 200 and 
300 samples
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Generative Network
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• Calculate MSE for 100 
independent training samples


• Train GANs on samples and 
calculate MSE for these


• Reference lines for 200 and 
300 samples


• Calculate MSE for fits on 
training samples
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• GAN describes distribution 
better than training data


• Needs 10,000 GANed points 
to match 150 true points

Generative Network
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• How is this possible? 

Generative Network
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• How is this possible? 

• In terms of information:

• sample: only data points

• fit: data + true function

• GAN: data + smooth, 

continuous function

Generative Network
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• How is this possible? 

• In terms of information:

• sample: only data points

• fit: data + true function

• GAN: data + smooth, 

continuous function

• This allows the GAN to 

interpolate

Generative Network

!76
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Statistical Properties

!77

• For interpolatable dataset:

• Info(N real points) < Info(M GANed points) 

•GANs have potential to amplify dataset

•Highly promising for application as simulation 

accelerators

Butter et al.: GANplifying Event Samples: 2008.06545
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Shower Simulation

•Classically done using Geant4

•First principle simulation modelling 

individual particle interactions

•Very computationally expensive

•Timing even more significant for  

higher luminosities

•Significant resources needed

!78

Simulator Hardware Batchsize Time/shower*

GEANT4 CPU N/A 4082 ± 170 ms

* average time for 10-100 GeV showers
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http://ihp-lx.ethz.ch/CompMethPP/lhc/pictures/

•Homogeneous Calorimeter

•Made up of single active block

•Great energy resolution

•No spatial information

Calorimeters
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http://ihp-lx.ethz.ch/CompMethPP/lhc/pictures/

•Homogeneous Calorimeter

•Made up of single active block

•Great energy resolution

•No spatial information

Calorimeters

•Sampling Calorimeter

•Alternating passive and active layers

•Only part of energy directly observed

•Maintains spacial structure
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ILD Calorimeter
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•International Large Detector (ILD)

•Detector for International Linear 

Collider (ILC) 
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ILD Calorimeter
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•International Large Detector (ILD)

•Detector for International Linear 

Collider (ILC) 

•ILD electromagnetic calorimeter

•Highly granular sampling calorimeter

•Active silicon, passive tungsten

•30 layers, 5mm x 5mm cells
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Training Dataset
• 950k photon showers 

• Continuous incident energy from 10 GeV to 100 GeV

• Constant incident point and angle

• Each shower 30x30x30 image

!83
Buhmann et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed: 2005.05334
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•Initial VAE tests on 2D version of Data

•Mean Squared Error to compare input and reconstruction

VAEs and Sparsity

MSE
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•Initial VAE tests on 2D version of Data

•Mean Squared Error to compare input and reconstruction

•Unable to reproduce outer hits

VAEs and Sparsity

MSE
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MSE MSE

VAEs and Sparsity
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MSE MSE
~800 ~490

•MSE between two random sparse images is larger than between 
random and empty

VAEs and Sparsity
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MSE MSE
~800 ~490

•MSE between two random sparse images is larger than between 
random and empty

•For outer shower hits:

•Presence more important than exact position

•Needs more fitting reconstruction loss than MSE

VAEs and Sparsity
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•Combines VAE and GAN ideas 


VAE-GAN
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•Combines VAE and GAN ideas 

•Enhances pixel wise Mean Squared Error loss with 

GAN-like adversarial network


VAE-GAN
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•Combines VAE and GAN ideas 

•Enhances pixel wise Mean Squared Error loss with 

GAN-like adversarial network

•Significant improvement in generated shower quality

VAE-GAN
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•Further expansion of the VAE-GAN structure

•Critic network that judges shower quality

•Second critic that judges reconstruction

Slava Voloshynovskiy et al.: 
Information bottleneck through 
variational glasses: 1912.00830

Bounded Information Bottleneck AutoEncoder
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• Bounded Information Bottleneck AutoEncoder
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BIB-AE Post Processor

•Additional Critic for latent regularisation

•Final Post Processor Network for fine tuning
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Results
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BIB-AEWGANGAN
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Differential Distributions

Buhmann et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed: 2005.05334
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Differential Distributions

Buhmann et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed: 2005.05334
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Differential Distributions

Buhmann et al.: Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed: 2005.05334
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Linearity and Resolution*
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* actually not the ECAL resolution as not correction  
  for sampling fraction variation performed
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Correlations
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Correlations
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Computation Time
• For 10-100 GeV showers: 

• 3 Orders of magnitude speedup compared to GEANT4

!101

Simulator Hardware Batchsize Time/shower Speedup

GEANT4 CPU N/A 4082 ± 170 ms -

BIB-AE CPU 1 426.3 ± 3.6 ms x10

BIB-AE GPU V100 1 3.19 ± 0.01 ms x1279

BIB-AE GPU V100 100 1.42 ± 0.01 ms x2874



Thank you


