Classification of diffraction patterns in Single Particle Imaging (SPI) experiments performed at X-ray free-electron lasers using a Convolutional Neural Network (CNN)

Alexandr Ignatenko

Hamburg, 04.12.2020

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

SPI experiment

LCLS 2018

- AMO beamline at LCLS
- Sample bacteriophage PR772, expected size 60-75 nm
- E = 1.7 keV (λ = 7.29 Å)
- Detector distance = 130 mm
- Detector pnCCD, one plane (512×1024) was operational

Data processing pipeline:

Classification: hit finding, size filtering, single-hit classification

YOLOv2

S. Seong et al., Determination of Vehicle Trajectory through Optimization of Vehicle Bounding Boxes using a Convolutional Neural Network. *Sensors* **2019**, *19*, 4263

Darknet-19 feature extractor trained on ImageNet

+ 1 convolutional layer: 20 convolutional layers

Loss function with classification and localization terms

Stochastic gradient descent (SGD) used for minimization Batch size: 64

YOLOv3

Data preparation

HDF5 file

Pattern 512×1024

ROI 123×240 Image file

954×1855

Image file 416×416 (YOLOv2)

608×608 (YOLOv3)

Data representation

Color (3 RGB layers, "jet" color scheme)

Training, validation and test sets

165 positive examples (single hits)

Validation set

53 positive examples (single hits)

283 negative examples

390 negative examples

Test set (55-84 nm)

16 937 negative examples

995 positive examples (single hits)

Training, validation and test

Observe training loss every iteration and save model every 100 iterations

Validation procedure to find an optimal training stage (not to optimize the hyper-parameters, *i.e.* size and number of filters, learning rate, batch size etc)

Calculate F₁-score on validation data set (every 100 iterations) to control overfitting

Intersection selection (4000, 4100, 4200, 4300 and 4400 iterations) for test

Results

Intersection selection

Model	Number of selected single hits	Intersection with manual selection	IoU for manual selection, %	Accuracy, %	Precision, %	Recall, %
YOLOv2, color, linear	1185	597	38	95	50	60
YOLOv2, color, log	1368	614	35	94	45	62
YOLOv2, grayscale, linear	1756	622	29	92	35	63
YOLOv2, grayscale, log	904	487	34	95	54	50
YOLOv3, color, linear	1041	505	33	94	49	51
YOLOv3, grayscale, linear	2316	465	16	87	20	47

Results

Comparison with a reference method

Model	Number of selected single hits	Intersection with manual selection	IoU for manual selection, %	Accuracy, %	Precision, %	Recall, %
YOLOv2,	1185	597	38	95	50	60
color, linear						
EM based	1085	574	34	94	53	48

Ground truth: manual selection

A. Ignatenko et al. (2020) "Classification of diffraction patterns in single particle imaging experiments performed at X-ray free-electron lasers using a convolutional neural network", *Machine Learning: Science and Technology* (submitted). Preprint available <u>http://arxiv.org/abs/2008.07288</u>

Outlook

- Build a custom CNN and train with diffraction patterns to the full depth
- Optimize hyper-parameters (use larger filters, reduce number of filters, increase batch size)
- Try state-of-the-art architectures
- Try methods of self-supervised and semi-supervised learning
- Attempt to generalize for many objects

Train with large amount of data: simulated+experimental data for many objects, extensive data augmentation

Simulated pattern (central part masked out)

Experimental pattern

Thank you for your attention!

Coherent X-ray Scattering and Imaging Group at DESY

Prof. Dr. I. A. Vartanyants N. Mukharamova D. Assalauova D. Lapkin Dr. J. Carnis Dr. Y-Y. Kim Dr. A. Ignatenko R. Khubbutdinov

Prof. Dr. E. Weckert (DESY)

S. A. Bobkov (National research Center "Kurchatov Institute")

A. B. Teslyuk (National research Center "Kurchatov Institute", Moscow Institute of Physics and Technology)

SPI consortium @ LCLS

A. Aquila (LCLS)

Helmholtz Associations Initiative and Networking Fund and the Russian Science Foundation grant HRSF-0002

