

Subir Sarkar
Rudolf Peierls Centre for Theoretical Physics, University of Oxford

IN THE PTOLEMIC/ARISTOTLEAN STANDARD COSMOLOGY ($350 \mathrm{BC} \rightarrow 1600$ AD) the universe was static and finite and centred on the Earth

This was a simple model and fitted all the available data ... but the underlying principle was unphysical

TODAY WE HAVE A NEW 'STANDARD $\Lambda C D M$ MODEL' OF THE UNIVERSE ... DOMINATED BY DARK ENERGY AND UNDERGOING ACCELERATED EXPANSION

It too is 'simple' (if we count Λ as just 1 parameter) and fits all the data (with just a few anomalies) ... but lacks a physical foundation

THE STANDARD COSMOLOGICAL MODEL IS BASED ON SEVERAL KEY ASSUMPTIONS: maximally symmetric space-time + general relativity + ideal fluids

$$
\begin{gathered}
d s^{2}=a^{2}(\eta)\left[d \eta^{2}-d \bar{x}^{2}\right] \\
a^{2}(\eta) d \eta^{2} \equiv d t^{2}
\end{gathered}
$$

Space-time metric Robertson_Walker

It is the assumed homogeneity and isotropy that enables the Einstein eqs. to be simplified to the Friedmann-Lemaître eqs.:

$$
\text { Negative pressure } \rightarrow \text { acceleration }
$$

$$
\ddot{a}=-\frac{4 \pi G}{3}(\rho+3 P) a
$$

$$
\begin{array}{r}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\lambda g_{\mu \nu} \\
=8 \pi G_{\mathrm{N}} T_{\mu \nu}
\end{array}
$$

Geometrodynamics

Einstein

'Dust' \rightarrow quantum fields
$T_{\mu \nu}=-\langle\rho\rangle_{\text {fields }} g_{\mu \nu}$
$\Lambda=\left(\lambda+8 \pi G_{\mathrm{N}}\langle\rho\rangle_{\text {fields }}\right.$

$$
\Rightarrow H^{2}=\left(\frac{a}{a}\right)^{2}=\frac{8 \pi\left(a_{0} x_{m}\right.}{3}-\frac{k}{a^{2}}+\frac{1}{3}
$$

$$
\equiv H_{0}^{2}\left[\Omega_{\mathrm{m}}(1+z)^{3}+\Omega_{k}(1+z)^{2}+\Omega_{\Lambda}\right]
$$

$$
z \equiv \frac{a_{0}}{a}-1, \Omega_{\mathrm{m}} \equiv \frac{\rho_{\mathrm{m}}}{3 H_{0}^{2} / 8 \pi G_{\mathrm{N}}}, \Omega_{k} \equiv \frac{k}{a_{0}^{2} H_{0}^{2}}, \Omega_{\Lambda} \equiv \frac{\Lambda}{3 H_{0}^{2}}
$$

This yields the 'cosmic sum rule': $1 \equiv \Omega_{\mathrm{m}}+\Omega_{k}+\Omega_{N}$

1998: DISTANT SNIA APPEAR FAINTER THAN EXPECTED FOR "STANDARD CANDLES" IN A DECELERATING UNIVERSE ... INTERPRETED AS \Rightarrow ACCELERATED EXPANSION BELOW $Z \sim 0.5$

Assuming the sum rule, observations implied: $\Omega_{\Lambda} \sim 0.7 \Rightarrow \Lambda \sim 2 H_{0}{ }^{2}, H_{0} \sim 10^{-42} \mathrm{GeV}$

This was interpreted by astronomers as evidence for vacuum energy at a scale of meV

$$
\Rightarrow \rho_{\Lambda}=\Lambda / 8 \pi \mathrm{G} \sim H_{0}^{2} M_{\mathrm{p}}^{2} \sim\left(10^{-12} \mathrm{GeV}\right)^{4}
$$

The Standard $S U(3)_{\mathrm{c}} \times S U(2)_{\mathrm{L}} \times U(1)_{Y}$ 'Model' (viewed as an effective field theory up to some high energy cut-off scale \boldsymbol{M}) describes all of microphysics

$$
\begin{aligned}
& +M^{4}+M^{2} \Phi^{2} m_{H}^{m_{H}^{2} \simeq \frac{h_{t}^{2}}{16 \pi^{2}} \int_{0}^{M^{2}} \mathrm{~d} k^{2}=\frac{h_{t}^{2}}{16 \pi^{2}} M^{2}} \quad \text { super-renormalisable } \\
& \text { Vacuum energy } \\
& \text { Higgs mass correction } \quad-\mu^{2} \phi^{\dagger} \phi+\frac{\lambda}{4}\left(\phi^{\dagger} \phi\right)^{2}, m_{H}^{2}=\lambda v^{2} / 2
\end{aligned}
$$

$$
\mathcal{L}_{\mathrm{eff}}=F^{2}+\bar{\Psi} \not D \Psi+\bar{\Psi} \Psi \Phi+(D \Phi)^{2}+V(\Phi) \quad \text { renormalisable }
$$

However there are two 'super-renormalisable' operators ... which become increasingly important as the cut-off M is raised

The second term gives rise to the notorious quadratic divergence of the Higgs mass (attempted solutions: supersymmetry, compositeness ...)
$1^{\text {st }}$ SR term couples to gravity so the natural expectation is

$$
\rho_{\Lambda} \sim(1 \mathrm{TeV})^{4} \Rightarrow 10^{60} \times(1 \mathrm{meV})^{4}
$$

i.e. the universe should have been inflating since (or collapsed at): $t \sim 10^{-12} \mathrm{~s}$ after BB
There must be a good reason why this did not happen!
"Also, as is obvious from experience, the [zero-point energy] does not produce any gravitational field" - Wolfgang Pauli

NB: There is no evidence for a change in the inverse-square law of gravitation at the inferred 'dark energy' scale of $\sim \mathbf{1 0}^{-\mathbf{3}} \mathbf{e V}: \rho_{\Lambda}{ }^{-1 / 4} \sim\left(H_{0} / \sqrt{G_{N}}\right)^{-1 / 2} \sim 0.1 \mathrm{~mm}$

$$
V(r)=-G \frac{m_{1} m_{2}}{r}[1+\alpha \exp (-r / \lambda)]
$$

CMB data indicate $\Omega_{\mathrm{k}} \approx 0$ so the FRLW model is simplified further, leaving only two free parameters (Ω_{Λ} and Ω_{m}) to be fitted to data

But if we underestimate $\Omega_{\mathrm{m}} \ldots$ or if there is a Ω_{x} (\Rightarrow a new component) which the FRLW model does not include, then we will incorrectly infer $\Omega_{\Lambda} \neq 0$ from the sum rule

This is what our universe actually looks like locally (out to ~200 Mpc)
... and on the biggest scales mapped

'Back reaction' is hard to compute because spatial averaging and time evolution (along our past light cone) do not commute

Relativistic numerical simulations of structure formation have just begun to be performed ... and some indicate that backreaction may be significant

Due to structure formation, the homogeneous solution of
Einstein's equations is distorted its average must be taken over the actual geometry

Courtesy: Thomas Buchert

Interpreting $\boldsymbol{\Lambda}$ as vacuum energy raises the 'coincidence problem':

WHY IS $\Omega_{\Lambda} \approx \Omega_{M}$ TODAY?

An evolving ultralight scalar field ('quintessence') can display 'tracking' behaviour: this requires $V(\varphi)^{1 / 4} \sim 10^{-12} \mathrm{GeV}$ but $\sqrt{ } \mathrm{d}^{2} V / \mathrm{d} \varphi^{2} \sim H_{0} \sim 10^{-42} \mathrm{GeV}$ to ensure slow-roll ... i.e. just as much fine-tuning as a bare cosmological constant

A similar comment applies to models (e.g. 'DGP brane-world') wherein gravity is modified on the scale of the present Hubble radius 1 / H_{0} so as to mimic vacuum energy ... this scale is absent in a fundamental theory and is just put in by hand (similar fine-tuning in every proposal - e.g. massive gravity, chameleon fields, ...)

The only natural option is if $\Lambda \sim H^{2}$ always, but this is just a renormalisation of G_{N} ! (recall: $H^{2}=8 \pi G_{\mathrm{N}} / 3+\Lambda / 3$) \rightarrow ruled out by Big Bang nucleosynthesis (requires G_{N} to be within 5% of lab value) ... in any case this will not yield accelerated expansion

Thus there can be no physical explanation for the 'coincidence problem'

Do we infer $\Lambda \sim H_{0}{ }^{2}$ because that is just the observational sensitivity (in the FRW cosmology framework) to the arbitrary parameter Λ, in terms of the only dimensionful observable H_{0} in the model ... which enters into every cosmological measurement?

$$
\begin{aligned}
& 2007 \text { Gruber Cosmology Prize to two teams } \\
& \text { "who discovered the accelerating universe" }
\end{aligned}
$$

Discovery of accelerating universe wins 2011 Nobel Prize in Physics

The 2015 Breakthrough Prize in Fundamental Physics "for the most unexpected discovery that the expansion of the universe is accelerating"

What are Type IA supernovae?

Identify by multiple exposure of sky (+ spectroscopy) \rightarrow measure peak magnitude and redshift

THE MAGNITUDE-REDSHIFT DATA CAN BE USED TO DO COSMOLOGY

$$
\begin{aligned}
& \mu \equiv 25+5 \log _{10}\left(d_{\mathrm{L}} / \mathrm{Mpc}\right), \quad \text { where: } \\
& d_{\mathrm{L}}=(1+z) \frac{d_{\mathrm{H}}}{\sqrt{\Omega_{k}}} \operatorname{sinn}\left(\sqrt{\Omega_{k}} \int_{0}^{z} \frac{H_{0} \mathrm{~d} z^{\prime}}{H\left(z^{\prime}\right)}\right), \\
& d_{\mathrm{H}}=c / H_{0}, \quad H_{0} \equiv 100 h \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}, \\
& H=H_{0} \sqrt{\Omega_{\mathrm{m}}(1+z)^{3}+\Omega_{k}(1+z)^{2}+\Omega_{\Lambda}},
\end{aligned}
$$

$\operatorname{sinn} \rightarrow \sinh$ for $\Omega_{k}>0$ and $\operatorname{sinn} \rightarrow \sin$ for $\Omega_{k}<0$

Distance modulus

$$
\mu_{\mathcal{C}}=m-M=-2.5 \log \frac{F / F_{\mathrm{ref}}}{L / L_{\mathrm{ref}}}=5 \log \frac{d_{L}}{10 \mathrm{pc}}
$$

... OR TO DO COSMOGRAPHY

Acceleration is a kinematic quantity so the data can be analysed without assuming any dynamical model, by expanding the time variation of the scale factor in a Taylor series

$$
q_{0} \equiv-(\ddot{a} a) / \dot{a}^{2} \quad j_{0} \equiv(\ddot{a} / a)(\dot{a} / a)^{-3} \quad \text { (e.g. Visser, CQG 21:2603,2004) }
$$

$$
d_{L}(z)=\frac{c z}{H_{0}}\left\{1+\frac{1}{2}\left[1-q_{0}\right] z-\frac{1}{6}\left[1-q_{0}-3 q_{0}^{2}+j_{0}+\frac{k c^{2}}{H_{0}^{2} a_{0}^{2}}\right] z^{2}+O\left(z^{3}\right)\right\}
$$

SN IA ARE NOT'STANDARD CANDLES'

... using the observed correlation between peak magnitude and light curve width
(NB: this is empirical and not understood theoretically)

Spectral AdAptive Lightcurve Template

(For making 'stretch' and 'colour' corrections to the observed lightcurves)
B-band

$$
\mu_{B}=m_{B}^{*}-M+\alpha X_{1}-\beta \mathcal{C}
$$

SALT 2 parameters
Betoule et al., A\&A 568:A22,2014

Name	$z_{\text {cmb }}$	m_{B}^{\star}	X_{1}	C	$M_{\text {stellar }}$	$?$
03Dlar	0.002	23.941 ± 0.033	-0.945 ± 0.209	0.266 ± 0.035	10.1 ± 0.5	$?$
03Dlau	0.503	23.002 ± 0.088	1.273 ± 0.150	-0.012 ± 0.030	9.5 ± 0.1	$?$
03Dlaw	0.581	23.574 ± 0.090	0.974 ± 0.274	-0.025 ± 0.037	9.2 ± 0.1	$?$
03Dlax	0.495	22.960 ± 0.088	-0.729 ± 0.102	-0.100 ± 0.030	11.6 ± 0.1	$?$
03D1bp	0.346	22.398 ± 0.087	-1.155 ± 0.113	-0.041 ± 0.027	10.8 ± 0.1	$?$
03D1co	0.678	24.078 ± 0.098	0.619 ± 0.404	-0.039 ± 0.067	8.6 ± 0.3	$?$
03D1dt	0.611	23.285 ± 0.093	-1.162 ± 1.641	-0.095 ± 0.050	9.7 ± 0.1	
03Dlew	0.866	24.354 ± 0.106	0.376 ± 0.348	-0.063 ± 0.068	8.5 ± 0.8	
03D1fc	0.331	21.861 ± 0.086	0.650 ± 0.119	-0.018 ± 0.024	10.4 ± 0.0	
03D1fq	0.799	24.510 ± 0.102	-1.057 ± 0.407	-0.056 ± 0.065	10.7 ± 0.1	
03D3aw	0.450	22.667 ± 0.092	0.810 ± 0.232	-0.086 ± 0.038	10.7 ± 0.0	
03D3ay	0.371	22.273 ± 0.091	0.570 ± 0.198	-0.054 ± 0.033	10.2 ± 0.1	
03D3ba	0.292	21.961 ± 0.093	0.761 ± 0.173	0.116 ± 0.035	10.2 ± 0.1	
03D3bl	0.356	22.927 ± 0.087	0.056 ± 0.193	0.205 ± 0.030	10.8 ± 0.1	

The host galaxy mass appears not to be relevant in the MLE fits ... but there may well be other variables that the magnitude correlates with

Joint Lightcurve Analysis data (740 Sne IA)

Betoule, Conley, Filippenko, Frieman, Goobar, Guy, Hook, Jha, Kessler, Pain, Perlmutter, Riess, Sollerman, Sullivan ... A\&A 568:A22,2014) http://supernovae.in2p3.fr/sdss_snls_ازa/

$$
\chi^{2}=\sum_{\text {objects }} \frac{\left(\mu_{B}-5 \log _{10}\left(d_{L}(\theta, z) / 10 p c\right)\right)^{2}}{\sigma^{2}\left(\mu_{B}\right)+\sigma_{\text {int }}^{2}}
$$

NB: Previous analyses used the 'constrained chi-squared' method ... wherein $\sigma_{\text {int }}$ is adjusted to get χ^{2} of $1 /$ d.o.f. for the fit to the assumed Λ CDM model
\qquad and obtain rather different results

CONSTRUCT A MAXIMUM LIKELIHOOD ESTIMATOR

Well-approximated as Gaussian

'Stretch' corrections

'Colour' corrections
$\mathcal{L}=$ probability density (data \mid model)

$$
\mathcal{L}=p\left[\left(\hat{m}_{B}^{*}, \hat{x}_{1}, \hat{c}\right) \mid \theta\right]
$$

$$
=\int p\left[\left(\hat{m}_{B}^{*}, \hat{x}_{1}, \hat{c}\right) \mid\left(M, x_{1}, c\right), \theta_{\text {cosmo }}\right]
$$

$\times p\left[\left(M, x_{1}, c\right) \mid \theta_{\text {SN }}\right] d M d x_{1} d c$ $\underbrace{}_{p\left[\left(M, x_{1}, c\right) \mid \theta\right]=p(M \mid \theta) p\left(x_{1} \mid \theta\right) p(c \mid \theta), \quad \text { where: }}$ $p(M \mid \theta)=\left(2 \pi \sigma_{M_{0}}^{2}\right)^{-1 / 2} \exp \left\{-\left[\left(M-M_{0}\right) / \sigma_{M_{0}}\right]^{2} / 2\right\}$, $p\left(x_{1} \mid \theta\right)=\left(2 \pi \sigma_{x_{1,0}}^{2}\right)^{-1 / 2} \exp \left\{-\left[\left(x_{1}-x_{1,0}\right) / \sigma_{x_{1,0}}\right]^{2} / 2\right\}$, $p(c \mid \theta)=\left(2 \pi \sigma_{c_{0}}^{2}\right)^{-1 / 2} \exp \left\{-\left[\left(c-c_{0}\right) / \sigma_{c_{0}}\right]^{2} / 2\right\}$.

$$
p(\hat{X} \mid X, \theta)=\frac{1}{\sqrt{\left|2 \pi \Sigma_{d}\right|}} \exp \left[-\frac{1}{2}(\hat{X}-X) \Sigma_{d}^{-1}(\hat{X}-X)^{\mathrm{T}}\right]
$$

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{\sqrt{\mid 2 \pi\left(\Sigma_{d}+A^{\left.\mathrm{T} \Sigma_{l} A\right) \mid}\right.}} \begin{array}{c}
\text { intrinsic } \\
\text { distributions }
\end{array} \\
& \times \exp \left(-\frac{1}{2}\left(\hat{Z}-Y_{0} A\right)\left(\Sigma_{d}+A^{\mathrm{T}} \Sigma_{l} A\right)^{-1}\left(\hat{Z}-Y_{0} A\right)^{\mathrm{T}}\right) \\
& \text { cosmology } \quad \mathcal{L}_{p}(\theta)=\max _{\phi} \mathcal{L}(\theta, \phi) \quad \text { SALT2 }
\end{aligned}
$$

We find the data is consistent with an uniform rate of expansion $(\Rightarrow \rho+3 p=0)$ at 2.8σ

Profile Likelihood
MLE, best fit

Ω_{M}	0.341
Ω_{Λ}	0.569
α	0.134
x_{0}	0.038
$\sigma_{x 0}^{2}$	0.931
β	3.058
c_{0}	-0.016
$\sigma_{c 0}^{2}$	0.071
M_{0}	-19.05
$\sigma_{M 0}^{2}$	0.108

NB: We show the result in the $\Omega_{m} \Omega_{\Lambda}$ plane for comparison with previous results (JLA)
... simply to emphasise that the statistical analysis had not been done correctly earlier (Other constraints e.g. $\Omega_{\mathrm{m}} \gtrsim 0.2$ or $\Omega_{m}+\Omega_{\Lambda} \simeq 1$ are relevant only to the Λ CDM model)

Rubin \& Hayden (ApJ 833:L30,2016) say that our model for the distribution of the JLA light curve parameters should have included a dependence on redshift - which no previous analysis had allowed for
... they added 12 more parameters to our (10 parameter) model to describe this individually for each data sample

Such a posteriori modification is not justified by the Bayesian information criterion

In any case this raises the significance with which a non-accelerating universe is rejected to only 3.7σ... still inadequate to claim a 'discovery' (even though the dataset has increased from ~100 to 740 SNe la in 20 yrs)

MOREVER THE UNIVERSE IS NOT ISOTROPIC AROUND US We see a dipole anisotropy in the CMB with $\Delta T / T \sim 10^{-3}$

This is interpreted as due to our motion at $370 \mathrm{~km} / \mathrm{s}$ wrt the frame in which the CMB is truly isotropic \Rightarrow motion of the Local Group at $620 \mathrm{~km} / \mathrm{s}$ towards $\mathrm{I}=271.9^{\circ}, \mathrm{b}=29.6^{\circ}$

This motion is presumed to be due to local inhomogeneity in the matter distribution ... according to structure formation in Λ CDM we should converge to the 'CMB frame' by averaging on scales larger than $\sim 100 \mathrm{Mpc}$

So the data is 'corrected' by transforming to the CMB frame - in which FLRW should hold

VELOCITY COMPONENTS OF THE OBSERVED CMB DIPOLE

THE BULK FLOW SHOULD RESULT IN A DIPOLE ANISOTROPY OF THE SNE IA

Aitoff-Hammer plot, Galactic coordinates
Left panel: The red spots represent the data points for $z<0.06$ with distance moduli $\mu_{\text {data }}$ bigger than the values μ_{CDM} predicted by $\Lambda \mathrm{CDM}$, and the green spots are those with $\mu_{\text {data }}$ less than μ_{CDM}; the spot size is a relative measure of the discrepancy. A dipole anisotropy is visible around the direction $b=-30^{\circ}, I=96^{\circ}$ (red points) and its opposite direction $b=30^{\circ}, I=276^{\circ}$ (small green points), which is the direction of the CMB dipole.

Right panel: Same plot for $z>0.06$
We perform tomography of the Hubble flow by testing if the supernovae are at the expected Hubble distances: Residuals \Rightarrow 'peculiar velocity' flow in local universe

Colin, Mohayaee, S.S. \& Shafieloo, MNRAS 414:264,2011

$$
0.015<z<0.045, v=270 \mathrm{~km} / \mathrm{s}, l=291, b=15
$$

$0.015<z<0.06, v=260 \mathrm{~km} / \mathrm{s}, l=298, b=8$

This is $\gtrsim 1 \sigma$ faster than expected for the standard Λ CDM model ... and extends beyond Shapley (at 260 Mpc)
... consistent with Watkins et al (2009) who found a bulk flow of $416 \pm 78 \mathrm{~km} / \mathrm{s}$ towards $b=60 \pm 6^{0}, I=282 \pm 11^{\circ}$ extending up to $\sim 100 h^{-1} \mathrm{Mpc}$

No convergence to CMB frame, even well beyond 'scale of homogeneity'

Full dataset: $279 \mathrm{SNe}(\mathrm{z}<0.1)$ from SNfactory \& Union2 compilation

Bulk flow modeled as velocity dipole:
$\tilde{d}_{\mathrm{L}}(z)=d_{\mathrm{L}}(z)+\frac{(1+z)^{2}}{H(z)} \vec{n} \cdot \vec{v}_{\mathrm{d}}$

Best fit direction consistent with direction to Shapley
\rightarrow Amplitude matches previous studies

No backside infal behind Shapley

- Contradicts Shapley as the main source of the bulk flow
- Results in this shell are driven by SNfactory data

Need attractor mass of $>10^{17} \mathrm{M}_{\text {sun }}$ at

 ~300 Mpc to account for the flow

Simplest model
Infall into spherical mass concentration

$$
\begin{gathered}
M_{\text {tot }}=\frac{4 \pi}{3} R^{3} \Omega_{\mathrm{M}} \rho_{\text {crit }}(1+\delta) \\
v_{p}(\vec{y})=\frac{a \Omega_{\mathrm{M}}^{0.55} H}{4 \pi} \int \frac{\vec{y}-\vec{x}}{|\vec{y}-\vec{x}|^{3}} \delta(\vec{y}) \mathrm{d}^{3} y
\end{gathered}
$$

Modeling the velocity field

Finding the Attractors

ANOMALOUS BULK FLOW IS CONFIRMED BY THE 6-DEGREE FIELD GALAXY SURVEY

According to the 'Dark Sky' Λ CDM Hubble Volume simulations, less than 1\% of Milky Way-like observers should experience a bulk flow as large as is observed, extending out as far as is seen

ANISOTROPY (DUE TO BULK FLOW?) IN A SAMPLE OF 313 X-RAY CLUSTERS

We find the peculiar velocity 'corrections' applied to the JLA catalogue are suspect the bulk flow had been assumed to drop to zero at $\sim 150 \mathrm{Mpc}$ - even though it is observed to continue beyond 300 Mpc !

So we undid the corrections to recover the original data in the heliocentric frame ... to check if the inferred acceleration of the expansion rate is indeed isotropic

Colin et al, A\&A 631:L13,2019

Sky distribution of the 4 sub-samples of the JLA catalogue in Galactic coordinates: SDSS (red dots), SNLS (blue dots), low redshift (green dots) and HST (black dots). CMB dipole (star), SMAC bulk flow (triangle), 2M++ bulk flow (inverted triangle)

When the acceleration is analysed allowing for a dipole, the MLE indeed prefers one (~ 50 times bigger than the monopole) ... in the same direction as the CMB dipole

The significance of q_{0} being negative has now decreased to only 1.4σ
This suggests that cosmic acceleration is an artefact of our being located within a bulk flow (which includes $3 / 4$ of the observed SNe la) - and not due to \wedge

DO WE INFER ACCELERATION EVEN THOUGH THE EXPANSION IS ACTUALLY DECELERATING ... BECAUSE WE ARE INSIDE A LOCAL ‘BULK FLOW’? (Tsagas, Phys.Rev.D84:063503,2011; Tsagas \& Kadiltzoglou, Phys.Rev.D92:043515,2015)
... if so expect a dipole asymmetry in the inferred deceleration parameter in the same direction - i.e. aligned with the CMB dipole

The patch A has mean peculiar velocity \tilde{v}_{a} with $\vartheta=\tilde{\mathrm{D}}^{a} v_{a} \gtrless 0$ and $\dot{\vartheta} \gtrless 0$ (the sign depending on whether the bulk flow is faster or slower than the surroundings)

Inside region B, the r.h.s. of the expression

$$
1+\tilde{q}=(1+q)\left(1+\frac{\vartheta}{\Theta}\right)^{-2}-\frac{3 \dot{\vartheta}}{\Theta^{2}}\left(1+\frac{\vartheta}{\Theta}\right)^{-2}, \quad \tilde{\Theta}=\Theta+\vartheta
$$

drops below 1 and the comoving observer 'measures' negative deceleration parameter

Riess et al (1998) SNe

Perlmutter et al (1999) SNe

Interestingly, most of the 60 SNe la studied by the High-z Team and the 45 SNe la studied by the Supernova Cosmology Project were in the direction of the bulk flow

Rubin \& Heitlauf (ApJ 894:68,2020) confirm our findings (C19), but criticise us for:
> "Incorrectly" not allowing redshift-dependence of light-curve parameters (BIC?) $>$ "Shockingly" using heliocentric redshifts

This illustrates just how many "corrections" need to be made to extract evidence for isotropic acceleration $q_{0 m}$, when the data in fact indicate anisotropic acceleration $q_{0 d}$!

IF THE DIPOLE IN THE CMB IS DUE TO OUR MOTION WRT THE 'CMB FRAME' THEN WE SHOULD SEE SIMILAR DIPOLE IN THE DISTRIBUTION OF DISTANT SOURCES

$$
\sigma(\theta)_{\text {obs }}=\sigma_{\text {rest }}\left[1+[2+x(1+\alpha)] \frac{v}{c} \cos (\theta)\right]
$$

Flux-limited catalog \rightarrow more sources in direction of motion

All-sky catalogue with N sources with redshift distribution $D(z)$ from a directionally unbiased survey

redshift
$\vec{\delta}=\overrightarrow{\mathcal{K}}\left(\vec{v}_{o b s}, x, \alpha\right)+\overrightarrow{\mathcal{R}}(N)+\overrightarrow{\boldsymbol{\mathcal { S }}}(D(z))$
$\overrightarrow{\mathcal{K}} \rightarrow$ The kinematic dipole: independent of source distance, but depends on source spectrum, source flux function, observer velocity
$\overrightarrow{\mathcal{R}} \rightarrow$ The random dipole: $\propto 1 / \sqrt{ } N$ - isotropically distributed
$\overrightarrow{\boldsymbol{S}} \rightarrow$ The dipole component of any actual anisotropy in the distribution of sources in the cosmic rest frame (significant for shallow surveys)

Radio sources: NVSS + SUMSS, 600,000 sources $z \sim 1, \overrightarrow{\boldsymbol{s}}(D(z)) \rightarrow 0$
Colin, Mohayaee, Rameez \& S.S., MNRAS 471:1045,2017
Wide Field Infrared Survey Explorer, 1,200,000 galaxies, z $\sim 0.14, \overrightarrow{\boldsymbol{\mathcal { S }}}(D(z))$ significant Rameez, Mohayaee, S.S. \& Colin, MNRAS 477:1722,2018

Wide Field Infrared Survey Explorer, 1,300,000 quasars, $z \sim 1, \overrightarrow{\boldsymbol{S}}(D(z)) \sim 1 \%$
Secrest, Rameez, von Hausegger, Mohayaee, S.S. \& Colin, arXiv:2009.14826

OUR PECULIAR VELOCITY WRT RADIO GALAXIES \# PECULIAR VELOCITY WRT THE CMB

Velocity ~ $1355 \pm 174 \mathrm{~km} / \mathrm{s}$ (with the 3D linear estimator)

Direction within 10° of CMB dipole (but much faster)!

Statistical significance: 99.75\% $\Rightarrow 2.8 \sigma$ (by Monte Carlo)

Confirms claim by Singal (2011) which was criticised subsequently (Gibelyou \& Huterer 2012, Rubart \& Schwarz 2013, Nusser \& Tiwari 2015)

We have addressed most concerns but this strange anomaly remains ... and casts doubt on the kinematic interpretation of the CMB dipole

OUR PECULIAR VELOCITY WRT QUASARS \# PECULIAR VELOCITY WRT THE CMB

Final sample - CatWISE AGN

$$
W 1-W 2 \geq 0.8
$$

$$
9>W 1>16.4
$$

In fact all data are equally consistent with no acceleration (best fit: $a \sim t^{0.9}$) ... will need $\sim 5 \times 10^{6}$ galaxy redshifts to see BAO peak without Λ CDM template

WHAT ABOUT THE PRECISION DATA ON CMB ANISOTROPIES?

Parameter	[1] Planck TT+lowP	[2] Planck TE+lowP	[3] Planck EE+lowP	[4] Planck TT,TE,EE+lowP
$\Omega_{\mathrm{b}} h^{2}$	0.02222 ± 0.00023	0.02228 ± 0.00025	0.0240 ± 0.0013	$\bigcirc \bigcirc 0.02225 \pm 0.00016$
$\Omega_{\mathrm{c}} h^{2}$	0.1197 ± 0.0022	0.1187 ± 0.0021	$0.1150+0.0048$	0.1198 ± 0.0015
$100 \theta_{\text {MC }}$	1.04085 ± 0.00047	1.04094 ± 0.00051	1.0398 -0.00094	1.04077 ± 0.00032
τ.	0.078 ± 0.019	0.053 ± 0.019	\ $0.059_{-0.019}^{+0.022}$	0.079 ± 0.017
$\ln \left(10^{10} A_{\mathrm{s}}\right)$	3.089 ± 0.036	$3.031+8.0 \pm \cap$	3.066 ${ }_{-0.041}^{+0.046}$	3.094 ± 0.034
$n_{\text {s }}$	0.9655 ± 0.0062	4-9 5 - 0.012	0.973 ± 0.016	0.9645 ± 0.0049
H_{0}	67.31 ± 0.96	66073 ± 0.92	70.2 ± 3.0	67.27 ± 0.66
Ω_{m}	0.315 ± 8003	0.300 ± 0.012	$0.286_{-0.038}^{+0.027}$	0.3156 ± 0.0091
	P. $22=0014$	0.802 ± 0.018	0.796 ± 0.024	0.831 ± 0.013
$10^{9} A_{\mathrm{s}} e^{-2 \tau}$	1. 880 ± 0.014	1.865 ± 0.019	1.907 ± 0.027	1.882 ± 0.012

There is no direct sensitivity of CMB anisotropy to dark energy ... it is all inferred (in the framework of $\Lambda C D M$) (To detect the late-ISW correlations between CMB \& structure induced by Λ will require 10 million redshifts)

Whether the expansion rate is accelerating will be directly tested using a Laser Comb on the European Extremely Large Telescope to measure redshift drift of the Lyman- α forest over ~10 yr

Summary

> The 'standard model' of cosmology was established long before there was any observational data ... and its empirical foundations (homogeneity, isotropy) have never been rigorously tested. Now that we have data, it should be a priority to test the model assumptions - not simply measure the model parameters
$>$ There is a dipole in the recession velocities of host galaxies of supernovae \Rightarrow we are in a 'bulk flow' stretching out beyond the scale at which the universe supposedly becomes statistically homogeneous The inference that the Hubble expansion rate is accelerating may be just an artefact of this bulk flow (and not due to a Cosmological Constant)
> The rest frame of distant quasars \neq the rest frame of the CMB
Do we need to start again to construct a standard model of cosmology? (following the manifesto outlined by G. Ellis, Gen. Rel. Grav., p.215, 1984)

AIP American Institute of Physics
 https://www.aip.org/history-programs/niels-bohr-library/oral-histories/33963

ORAL HISTORIES

Lightman:

Interview date: Monday, 3 April 1989

Taking into account a large body of work besides the Geller, de Lapparent, Huchra work your own work on the large-scale motions and the work of the Seven Samurai \& all of that work which has shown that the universe is more inhomogeneous than might have been present in simple models - has that altered your view of the big bang model at all, or of the validity of model, the assumptions of the model, that kind of thing?

Rubin et al, Motion of the Galaxy and the local group determined from the velocity anisotropy of distant SC I galaxies, Astron.J.81:719,1976
Dressler et al, A Large-Scale Streaming Motion in the Local Universe Astrophys.J.313:L37,1987

Rubin:

It certainly has convinced me that we're not living in a homogeneous, isotropic [universe]. I mean these things that I really suspected in the back of my mind, I can now say publicly. I'm not sure the Robertson-Walker universe exists. I can think of more questions to ask because of what they've done, which go more in the direction of making things more inhomogeneous, and I've at least asked some of my theorist friends some of them. No, it hasn't concerned me about the big bang maybe because I just don't put my mind to it. If someone came out with a different model that could incorporate such large-scale inhomogeneities, I would be
 delighted to see it, but until then I will just live with the big bang model.

