Searches for Neutrino Sources with IceCube Cascade Events

Friday 16 July 2021 19:18 (12 minutes)

IceCube has discovered a flux of astrophysical neutrinos, and more recently has used muon-neutrino datasets to present evidence for one source; a flaring blazar known as TXS 0506+056. However, the sources responsible for the majority of the astrophysical neutrino flux remain elusive. Opening up new channels for detection can improve sensitivity and increase the chance of a discovery. In this work we present a new neutrino dataset relying heavily on Deep-Neural-Networks (DNN) to select cascade events produced from neutral-current interactions of all flavors and charged-current interactions with flavors other than muon-neutrino. The speed of DNN based selections allows the event selection to be performed in near-realtime with a single GPU. Cascade events have reduced angular resolution when compared to muon-neutrino events, however the resulting dataset has a lower energy threshold in the southern sky and a lower background rate. These benefits lead to an improved sensitivity to sources in the southern sky when compared to muon-neutrino datasets. This improvement is particularly promising for identifying transient neutrino sources in the southern sky and neutrino production from the galactic plane.

Keywords

Collaboration

IceCube

other Collaboration

Subcategory

Experimental Results

Primary authors: SCLAFANI, Stephen (Drexel University / IceCube); HÜNNEFELD, Mirco (TU Dortmund)

Presenter: SCLAFANI, Stephen (Drexel University / IceCube) **Session Classification:** Discussion

Track Classification: Scientific Field: NU | Neutrinos & Muons