Contribution ID: 110 Type: Talk

Cherenkov Telescope Array Sensitivity to the Putative Millisecond Pulsar Population responsible for the Galactic Center Excess

Wednesday 21 July 2021 12:24 (12 minutes)

The leading explanation of the Fermi Galactic center γ -ray excess is the extended emission from a unresolved population of millisecond pulsars (MSPs) in the Galactic bulge. Such a population would, along with the prompt γ rays, also inject large quantities of electrons/positrons (e^{\pm}) into the interstellar medium. These e^{\pm} could potentially inverse-Compton (IC) scatter ambient photons into γ rays that fall within the sensitivity range of the upcoming Cherenkov Telescope Array (CTA). In this talk, I will present the results of an examination of the detection potential of CTA to this signature by making a realistic estimation of the systematic uncertainties on the Galactic diffuse emission model at TeV-scale γ -ray energies. We forecast that, in the event that e^{\pm} injection spectra are harder than E^{-2} , CTA has the potential to robustly discover the IC signature of a putative Galactic bulge MSP population sufficient to explain the GCE for e^{\pm} injection efficiencies in the range $\approx 2.9-74.1\%$, or higher, depending on the level of mismodeling of the Galactic diffuse emission components. On the other hand, for spectra softer than $E^{-2.5}$, a reliable CTA detection would require an unphysically large e^{\pm} injection efficiency greater than $\approx 158\%$. However, even this pessimistic conclusion may be avoided in the plausible event that MSP observational and/or modeling uncertainties can be reduced. We further find that, in the event that an IC signal were detected, CTA can successfully discriminate between an MSP and a dark matter origin for the radiating e^{\pm} .

Keywords

Galactic Center Excess; Millisecond pulsars; gamma-rays; CTA; dark matter annihilation

Collaboration

other Collaboration

Subcategory

Theoretical Results

Primary author: Dr MACIAS, Oscar (Kavli Institute for the Physics and Mathematics of the Universe)

Co-authors: Mr VAN LEIJEN, Harm (University of Amsterdam); Mr SONG, Deheng (Virginia Tech); ANDO, Shin'ichiro (University of Amsterdam); Prof. HORIUCHI, Shunsaku (Virginia Tech); CROCKER, Roland (Australian National University)

Presenter: Dr MACIAS, Oscar (Kavli Institute for the Physics and Mathematics of the Universe)

Session Classification: Discussion

Track Classification: Scientific Field: DM | Dark Matter