Contribution ID: 632 Type: Talk

Results on mass composition of cosmic rays as measured with LOFAR

Tuesday 13 July 2021 19:18 (12 minutes)

We present an updated analysis of the mass composition of cosmic rays in the 10^{17} to 10^{18} eV energy range. It is based on measurements with the LOFAR telescope of the depth of shower maximum, $X_{\rm max}$.

We review the improvements to the simulation-based reconstruction setup, as well as the selection method to obtain a minimally biased $X_{\rm max}$ -dataset. Systematic uncertainties on $X_{\rm max}$ have been lowered to an estimated 7 to 9 g/cm², at a resolution of about 20 g/cm² per shower.

Results include estimates of the mean and standard deviation of the $X_{\rm max}$ -distribution. A statistical analysis at distribution level has been done as well, using a 4-component model of light to heavy nuclei.

It confirms our previous results showing a significant low-mass fraction in this energy range.

We discuss consistency with existing results on Xmax and mass composition.

Keywords

air showers; cosmic rays; mass composition; shower maximum; Xmax

Collaboration

LOFAR

other Collaboration

Subcategory

Experimental Results

Primary authors: CORSTANJE, Arthur (Free University Brussels); FOR THE LOFAR CR-KSP

Presenter: CORSTANJE, Arthur (Free University Brussels)

Session Classification: Discussion

Track Classification: Scientific Field: CRI | Cosmic Ray Indirect