

Status of dca study DESY. Try to find a different variable for the charm beauty separation

Josry Metwally, Achim Geiser – Hamburg, 19.11.20

Status of dca study

- We started to use, as HIN did it, dca (*distance of closest approach*) to distinguish between prompt (charm) and nonprompt (beauty) D* in D* final states (*charm beauty separation in D* final states*) more detailed <u>BPH-talk</u>
- BPH motivated us to study a similar variable like dca for this separation
- Next would be dca significance (for the moment not achievable with our reconstruction Ansatz)
- For this study we started with a MC closure test at 7TeV (D0Kpi sample with looser precuts on dEdx see preselection cuts for D* meson analyses, by Achim)
- In the following we can see a set of different variables studied for the charm beauty separation
 - 1.) dca (product of the decay length and the angle), 2.) cosphi
 - 3.) dlSig (decay length significance),
 - 4.) dca*dlSig (product of the dca and the decay length significance)
 - 5.) Idea for an approximation of dcaSig: moddca (*moddca* = 20*DstarD0_dca/DstarD0_dlErr + DstarD0_dlSig) unit-less
 - We have correlation plots for beauty/charm in:

1.) dca vs. dl2.) dca vs. dlSig3.) dca vs. cosphi4.) dca*cosphi vs. dlSig5.) cosphi vs. dlSigPage 2

Correlation Plots

Correlation plots for dca vs. dl

Correlation plots for dca vs. dlSig

motivation for dca*dlsig

Correlation plots for dca vs. cosphi

DESY.

Page 6

Correlation plots for dca*cosphi vs. dlSig

Correlation plots for cosphi vs. dlSig

cb separation

Signal extraction

• The procedure for the signal extraction (shown in detail <u>here</u>) is the same for each of the used parameters:

The charm beauty separation with dca

The charm beauty separation with dca

The charm beauty separation with dlSig

The charm beauty separation with dlSig

The charm beauty separation with dca*dlSig

The charm beauty separation with dca*dlSig

The charm beauty separation with moddca

moddca is working but not really better than dca

The charm beauty separation with moddca

moddca is working but not really better than dca

The charm beauty separation with cosphi

calculations with fit parameters c and b and fit errors δ_c and δ_b in bin highpt	
$N_{c+b} = (c \pm \delta_c) \bullet N_c + (b \pm \delta_b) \bullet N_b = (1.042^{0.033}_{-0.033} \pm 0.033) \bullet 41134 + (0.59^{0.247}_{-0.246} \pm 0.2465) \bullet 5492$	
= (42861.6 ^{1357.42} _{-1357.42} \pm 1357.42) + (3240.28 ^{1356.52} _{-1351.03} \pm 1353.78) = 46101.9 \pm 1917.11	
signal in data is: 46036.7 with used SF= 3.75493	
using the shortcuts: $\Delta_{\mathbf{b}} = \delta_{\mathbf{b}} \bullet \mathbf{N}_{\mathbf{b}}$ and $\Delta_{\mathbf{bc}} = \sqrt{\Delta_{\mathbf{b}}^2 + \Delta_{\mathbf{c}}^2}$	
frac_beauty = $\frac{\mathbf{b} \cdot \mathbf{N}_{\mathbf{b}}}{\mathbf{b} \cdot \mathbf{N}_{\mathbf{b}} + \mathbf{c} \cdot \mathbf{N}_{\mathbf{c}}} = \frac{\Sigma^{\mathbf{b}}}{\Sigma^{\mathbf{b}} + \Sigma^{\mathbf{c}}}$	
fracErr_beauty = $\sqrt{\left(\frac{\Delta_{b}}{\Sigma^{b} + \Sigma^{c}}\right)^{2} + \left(\frac{\Delta_{bc} \cdot \Sigma^{b}}{(\Sigma^{b} + \Sigma^{c})^{2}}\right)^{2}}$	pythia prediction:
fraction from beauty: 0.0702851 ± 0.02951	$f_{b} = \frac{N_{b}}{N_{b} + N_{c}} = 0.117788$
fraction from cahrm: 0.929715 ± 0.0485968	$f_{c} = \frac{N_{c}}{N_{b} + N_{c}} = 0.882212$

• cosphi is not suitable for the charm beauty separation

Summary and outlook

- dlSig not much better compared to dca
- dcadl*Sig is working relatively good :-)
- moddca is working but not really better than dca
- cosphi is not suitable for the charm beauty separation
- Next steps:
 - MC closure test on bin by bin separation with dca*dlSig
 - Use more statistic (2015 5TeV)

Backup

Correlation plots for dca*dlsig vs. ((10*dca)^2 + (.03*dlsig)^2)

beauty

charm

