P. Connor

Introduction

Framework

Practice

Summary & Conclusions

Back-up

Jet measurements Beyond inclusive jet and inclusive b jet

Patrick L.S. CONNOR

Deutsches Elektronen-Synchrotron Hamburg

19 November 2020

Introduction.

Introduction I

Jets

- P. Connor
- Introduction Framework
- Practice
- Summary & Conclusions
- Back-up

History

- My contributions to the jet measurements with Run-2 data started early 2016 with the inclusive *b* jet analysis.
- Then, Radek and I started the development of a pretty powerful framework, and we decided to abandon the old one.
- Although the focus was on the inclusive jet analysis, we tried to develop the software in a generic way, so that it could be used for the inclusive *b* jet at least, as well as for Luis Ignacio's analyses.
- Finally, at least colleagues from Greece have already adopted the framework.

Outline

• Quick description of the framework.

Framework.

How the project came up Tools Documentation

P. Connor

Introduction

Framework

- How the project came up Tools
- Documentation
- Practice
- Summary & Conclusions
- Back-up

How the project came up

DAS = Data Analysis School

- Successfully used for long exercise at DAS18 at DESY and DAS19 at PKU (2.5 days)
- Using full 2016 & 2017 datasets, able to run within a few minutes
- \longrightarrow newcomers were able to perform analysis, from *n*-tuples to unfolded results with systematics

DAS = Das Analysis System

- ROOT-based environment
 - inspired from advantages and limitations from the former SMPJ *n*-tupliser
 - developed as a CMSSW module for convenience (ROOT compatibility, etc.) although no fundamental component from CMSSW is used (except in *n*-tupliser itself)
- Basic principles in appendix.
- Currently developed and used at DESY, nearly fully ported to CERN.
- $\longrightarrow http://gitlab.cern.ch/DasAnalysisSystem$

Tools in development

- Toy RM based on double Crystal-Ball function.
- Smoothing of systematic correlated uncertainties.

Documentation

Introduction

Jets

P Connor

Framework

How the project came up Tools

Documentation

Practice

Summary & Conclusions

Back-up

Status

- I avoid TWiki: hard to maintain or to keep up to date.
- The AN of the inclusive jet analysis includes references to the pieces of code.
- Otherwise using Doxygen and README.md files.

0	Convergencycles > beals					
2	DasAnalysisSystem 0					
2						
2	D . Novbday					
	Analysis framework for inclusive jet cross section with CMS data at 13 TeV to	akan during LHC Ra	n-l			
	Heat more					
5	Search by name Last created ~					
2	Bubgroups and projects. Brand projects. Archived projects					
	and all an halfers and halfers second below					
	∏ Tettingtleber ©	*1	1 year o			
2	R Statistics and Sta	*1	1 year a			
>	Π Image: second seco	*1	Typer a Typer a Typer a			
>	Construction C	*1 *1 *1 *1	Tyoara Tyoara Tyoara Tyoara Tdaya			
2	Comparing a set of the set o	*1 *1 *1 *1	1 year a 1 year a 1 year a 1 dey a 1 year a			
2	Construction C	*1 *1 *1 *1 *1 *1 *1	1 year a 1 year a 1 year a 1 dey a 5 year a 7 monto a			

Practice.

Dijet mass $R_{\Delta\phi}$

P. Connor

Introduction Framework Practice Dijet mass $R_{\Delta\phi}$

Summary & Conclusions

Back-up

The two measurements driving the developments

- Inclusive jet
- Inclusive b jet

Measurements with Luis Ignacio

- Dijet decorrelations
- Single-jet spectra

Two recent measurements discussed in the next slides...

Dijet mass

• $R_{\Delta\phi}$

 $\frac{\mathrm{d}^2\sigma}{\mathrm{d}m_{jj}\,\mathrm{d}y_{\max}}$

$$R_{\Delta\phi}(p_T) = \frac{\sum_{n=0}^{\infty} nN(p_T, n)}{\sum_{n=0}^{\infty} N(p_T, n)}$$

 \rightarrow In collaboration with colleagues from Greece & KIT.

Practice

(1)

(2)

P. Connor

Introduction Framework Practice Dijet mass $R_{\Delta\phi}$ Summary & Conclusions Back-up

Dijet mass

Strategy

- Re-use (nearly) exact same samples as in inclusive jet analysis.
- Leading and subleading jets must be matched within a cone (swapping is allowed).
- 2D unfolding is used to treat migrations among |y_{max} bins (especially important when swapping).
- Using pure matrix inversion (small condition number, no need for regularisation).

P. Connor

Introduction Framework Practice Dijet mass $R_{\Delta\phi}$ Summary & Conclusions Back-up

Dijet mass

Figure

- Showing ratio to Pythia before and after unfolding.
- We use single-jet triggers based on p_T , just like in the inclusive jet analysis.
- Unfolding was straightforward, including all systematic uncertainties (except impact of model in unfolding).

P. Connor

Introduction Framework Practice Dijet mass $R_{\Delta\phi}$ Summary & Conclusions Back-up

Dijet mass

Figure

- Statistical uncertainties are only dominated by JES uncertainties.
- No model uncertainty.

$$R_{\Delta\phi}(p_T) = \frac{\sum_{n=0}^{\infty} nN(p_T, n)}{\sum_{n=0}^{\infty} N(p_T, n)}$$
(3)

- $R_{\Delta\phi}$ is sensitive to α_S (see last presentation on QCD meeting of 7 June 2019).
- n is the number of « neighbours » of a given jet.
- We extract $R_{\Delta\phi}$ from $N(p_T, n)$ after unfolding.
- In practice, there are rarely more than 2 neighbours per jet.

P. Connor

DES

Figures

• We recycle the piece of code as for the extraction of the *b* jet fraction.

 $R_{\Delta\phi}$

 I only show data here: the fit to obtain α_S is performed by colleagues from Ioannina.

Summary & Conclusions.

P. Connor

Introduction

Framework

Practice

Summary & Conclusions

Back-up

- A good & unique framework brings several advantages:
 - Less repetition, less time spent at re-inventing the wheel.
 - \longrightarrow The inclusive b jet analysis took just a few days, similarly for the dijet mass measurement.
 - Avoid artificial tensions among measurements.
 - More time to spend on novel developments or on physics.
 - \longrightarrow Benefiting from the many developments for the inclusive jet analysis.
- Prospects:
 - Extend to full Run-2.
 - \longrightarrow Actually, we developed the framework with 2017 and we also tested once 2018...
 - Investigate correlations among different measurements.
 - \longrightarrow Less time spent on technicalities would mean more time for physics.

Thank you for your attention!

Back-up.

Modern computing

Crucial questions

orogram CPU time / fastest CPU time

- How long does it take to compile a code?
- How long does it take to execute a code?
- How large are the root files? → parallelisation?

- How readable is the code?
- Is it easy to maintain the code?
- Could anyone join the analysis easily?
 - \longrightarrow re-usability?

Jets P Connor

computing A few principles Organisation Running Long-term safeties

Modern

Acronyms

P. Connor

Modern computing A few principles Organisation Running Long-term safeties Acronyms

The ten six commandments

- Thou shalt not make more than one or two operations at a time.
- Thou shalt not write codes much longer than a few hundreds of lines.

A few principles

- Thou shalt not multiply layers of scripts and of classes.
- Thou shalt not mix plotting and advanced (slow) operations.
- Thou shalt not use too many flags.
- Thou shalt not over-engineer your code.

Prerequisites

- Decent knowledge of C++
 - \longrightarrow basic oriented object programming, basic template programming, ROOT
- Basics with Git (and GitLab)

 \longrightarrow be familiar with branches and commits at least, with forks and merge requests would be nice

 \longrightarrow all standard things for physicist (no fundamental need to be a real C++ advanced expert)

Organisation

Software (on a fast storage system)

Clean & compilable C++17 code:

- 1 Create *n*-tuples
 - \longrightarrow from <code>MiniAOD</code> to light format using ROOT dictionary
- 2 Apply PU corrections, JECs, etc. to *n*-tuples
 - \longrightarrow transform a *n*-tuple into another *n*-tuple (with same structure)
- **3** Project *n*-tuples
 - \longrightarrow onto basic histograms without any cosmetics
- 4 Unfold projections
 - \longrightarrow only TUnfold at the moment

 \longrightarrow keep the software light and the code rather generic (remember that it is sent to the grid each time you submit CRAB jobs...)

Jets P Connor

Modern computing A few

principles Organisation

Running Long-term

safeties Acronyms

Work-area (on a large-file system, e.g. eos)

Make physics from the terminal or from short script (examples on next slides)

- intending to host the "heavy" n-tuples (at most a few tens of GB)
- still some logical structure of the directories
- also with luminosity and calibration tables
- scripts for ratio, fractions, simple projections & plotting only

 \longrightarrow don't waste time writing too clean code, since it should be rather dependent on the analysis

P. Connor

Modern computing A few principles Organisation Running Long-term safeties

Acronyms

Practice

The programs to analyse or modify events have the following general structure:

Running

analyser input output [...] nSplit nNow

- input The input root files with events inside TTree
- output The output root file (with either histograms or TTree)
 - ... any other arguments (depending on the command)
- nSplit To how many slices to split the input sample
 - nNow The index of slice to run over

 \longrightarrow just enter the command in the prompt to see the required arguments.

Running

Jets

P. Connor

Modern computing A few principles Organisation Running Long-term safeties

Acronyms

1 run on the whole sample

analyser input output analyser input output 1 0

 \longrightarrow the two lines are equivalent

2 run on the first half of events

analyser input output 2 analyser input output 2 0 **③** run on the first thousandth of events

analyser input output 1000 analyser input output 1000 0

\longrightarrow good for testing

run over all 10 slices in parallel
 for i in `seq 0 9`
 do
 analyser in out\$i 10 \$i &
 done
 }
}

Beyond testing: parallel & submit

Use all cores on current machine:
 Use HTCondor (might need a quick fix):
 parallel analyser input output
 submit analyser input output

Long-term safeties

Continuous Integration (CI)

Using GitLab environment at CERN, testing after every git push:

- compilation
- *n*-tupliser
- a few executables
- documentation

 \longrightarrow https://mattermost.web.cern.ch/cms-exp/channels/das18

Doxygen

- Easiest way to document/comment within the code
- Automatically producing documentation with CI

 \longrightarrow http://desy.de/~connorpa/DAS/doxygen/

Modern computing A few principles Organisation Running Long-term safeties

Jets

P Connor

Acronyms

P. Connor

Acronyms

Acronyms I

JEC Jet Energy Correction. 20

CERN	European Organisation for Nuclear Re- search. 5, 24	JES	Jet Energy Scale. 12
CI CMS	Continuous Integration. 24 Compact Muon Solenoid. 6	PU	pile-up. 20
DESY	Deutsches Electroknen-Synchrotron. 5	RM	Response Matrix. 6

P. Connor

Acronyms

Patrick L.S. CONNOR Deutsches Elektronen-Synchrotron Tel.: +49 40 8998-2617 Geb.: 01a/O2.104 https://www.desy.de/~connorpa

