Progress in Plasma Booster R&D at FLASHFORWARD

Jens Osterhoff Head of Plasma Accelerator R&D **DESY.** Accelerator Division

7th Matter and Technologies Days *February* 3rd, 2021

Acknowledgements

FLASHFORWARD TEAM

Richard D'Arcy (Coordinator) Stephan Wesch (Technical C.) Judita Beinortaite Jonas Björkland Svensson Simon Bohlen Lewis Boulton James Chappell Jimmy Garland (PI) Pau Gonzalez Julian Hörsch **Alexander Knetsch*** Carl Lindstrøm (PI) **Gregor Loisch (PI)** Felipe Peña Asmus Kris Põder Adam Scaachi

Sarah Schröder Bridget Sheeran Gabriele Tauscher* Jon Wood (PI) Ming Zeng*

THEORY GROUP

Maxence Thévenet Gregory Boyle Severin Diederichs Angel Ferran Pousa Alberto Martinez de la Ossa Mathis Mewes

...and the technical groups from the accelerator and particle physics devisions!

Driver (laser or charged-particles)

Witness (electrons)

© Kyrre Ness Sjøbæk (2020)

Depleted driver

Accelerated witness

Plasma

source

Plasma accelerators are a centimeter-scale source of GeV beams

Driver (laser or charged-particles)

Witness (electrons)

FBPIC simulation

Plasma wakefields can sustain accelerating fields of up to ~1-100 GV/m with focusing gradients above ~1 MT/m

x1000 more than RF technology

Our customers: high-energy physics and photon science

> High-energy physics and photon science demand high(est) energy at low cost.

> Solution: Plasma accelerators — significantly higher acceleration gradients.

> Simultaneously, particle colliders have strict demands for luminosity: (FELs have similar demands for brightness)

> Energy efficiency motivates use of beam-driven plasma acceleration.

 $\eta = \eta_{wall \to DB} \times \eta_{DB \to WB}$

Beam-drivers are orders of magnitude more efficient than laser-drivers (for now)

Primary goal of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage with high-efficiency, high-quality, and high-average-power

High efficiency

Transfer efficiency

Driver depletion

Energy-spread preservation

Emittance preservation

High beam quality

High average power

High repetition rate

FLASHFORWARD utilizes FLASH superconducting accelerator

Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality

> FLASH is an FEL user facility

- 10% of beam time dedicated to generic accelerator research

Superconducting accelerator based on ILC/XFEL technology

- ≤ 1.25 GeV energy with ~nC charge at few 100 fs bunch duration
- $\sim 2 \,\mu m$ trans. norm. emittance
- ~10 kW average beam power, MHz repetition rate in 10 Hz bursts
- exquisite stability by advanced feedback/feedforward systems

> Unique opportunities for plasma accelerator science

FLASHFORWARD utilizes FLASH superconducting accelerator

Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality

R. D'Arcy et al., Phil. Trans. R. Soc. A 377, 20180392 (2019)

Advanced collimator system for longitudinal bunch shaping **FLASHFORWARD** beamline features innovative components and methods

FLASH compressors and 3.9 GHz cavity)

Two discharge capillaries provide density controllable plasma

FLASHFORWARD beamline features innovative components and methods

Two-BPM tomography enables accurate beam focus characterization FLASHFORWARD beamline features innovative components and methods

PolariX cavity enables 6D phase space measurements

FLASHFORWARD beamline features innovative components and methods

PolariX allows for diagnosis of head-to-tail beam tilts FLASHFORWARD beamline features innovative components and methods

DESY. | Jens Osterhoff | MT Days | February 3, 2021

- Head-to-tail centroid offsets are sources of collective beaminstabilities in plasma ("hosing")
- Tweaking two magnets in the FLASHForward beamline controls and compensates for tilt

Hosing theory and control

- T.J. Mehrling et al., PRL 118, 174801 (2017)
- T.J. Mehrling et al., Phys. Plasmas 25, 056703 (2018)
- A. Martinez d.I.O. *et al.*, PRL **121**, 064803 (2018)

Х

1.1 GeV energy gain and loss achieved in a 195 mm plasma module Plasma accelerator essentials — demonstrating 6 GV/m field strength

beam

> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

> The energy needs to be extracted very rapidly -ideally within the first oscillation.

a celeration

Optimal beam loading enables uniform and efficient acceleration

> Problem 1: Compared to RF cavities (Q ~ 10^4 – 10^{10}), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

> The energy needs to be extracted very rapidly -ideally within the first oscillation.

> Solution: Beam loading The trailing-bunch wakefield "destructively interferes" with the driver wakefield – extracting energy.

> Problem 2: to extract a large fraction of the energy, the beam will cover a large range of phases (~90 degrees or more).

> Large energy spread is induced.

Optimal beam loading enables uniform and efficient acceleration

> Problem 1: Compared to RF cavities (Q ~ 10^4 – 10^{10}), the electric fields in a plasma decay very rapidly ($Q \sim 1-10$).

> The energy needs to be extracted very rapidly -ideally within the first oscillation.

> Solution: Beam loading The trailing-bunch wakefield "destructively interferes" with the driver wakefield – extracting energy.

> Problem 2: to extract a large fraction of the energy, the beam will cover a large range of phases (~90 degrees or more).

> Large energy spread is induced.

> Solution: Optimal beam loading The current profile of the trailing bunch is *precisely tailored* to exactly flatten the wakefield.

> This requires <u>extremely precise control</u> of the current profile.

> FLASHForward provides the tools to do that.

Image credit: M. Tzoufras *et al.*, Phys. Rev. Lett. **101**, 145002 (2008)

High-resolution plasma wakefield sampling demonstrated **Opens a pathway to targeted and precise field manipulation**

Beam itself acts as a probe

 \rightarrow measures in-situ (under actual operation conditions) the effective field acting on beam with μ m / fs resolution

current (kA) eam m

Loading the wakefield and beam shaping flattens the gradient **Direct visualization of electric-field control by wakefield sampling**

DESY. | Jens Osterhoff | MT Days | February 3, 2021

High-quality, efficient acceleration for sustainable applications Beam-loading facilitates 42% energy-transfer efficiency, 0.2% energy spread with full charge coupling

Accelerating gradient of 1.3 GV/m

Energy gain 45 MeV (over 3.5 cm distance) of 100 pC witness, with energy spread of 1.4 MeV FWHM and no charge loss

> Few-percent-level wakefield flattening demonstrated

- 0.2% energy spread (input 0.16%) (improvement by factor 10 over state-of-the-art)
- (42±4)% energy transfer efficiency (improvement by factor 3 over state-of-the-art)

40
35
30
25
20
15
10
5

FLASHFORWARD roadmap aims at 10 kW with high beam quality

Plan covers major plasma accelerator challenges

FLASHFORWARD roadmap aims at 10 kW with high beam quality

Plan covers major plasma accelerator challenges

Simulations play a crucial role for research at FLASHFORWARD Long-time-scale plasma dynamics challenge current capabilities

- > Accurate simulations are essential
 - to predict new phenomena
 - to prepare and plan experimental studies
 - to verify and analyze measurements

State-of-the-art code development

- WarpX full 3D electromagnetic, open-source, GPU (LBNL)
- **FBPIC** quasi-RZ, Python, **open-source, GPU** (LBNL, UHH, DESY)
- **Hipace** quasi-static, 3D, work in progress... (DESY, LBNL)

- ~M core hour for single simulation with full particle-in-cell (PIC) scheme → ensemble of simulations are (prohibitively) expensive
- Development of specialized codes / efficient and accurate algorithms critical

- **Performance portability** on heterogeneous platforms required
- **Inter-operability** of HPC tools
- Advanced numerical methods and AI increasing in importance (\rightarrow ACCLAIM)

Simulations for plasma accelerators require High-Performance Computing (HPC)

> HPC is a dynamic field

Maxence Thévenet Group leader

Enabling ensembles of S2E multi-physics simulations

- Adoption of the **openPMD I/O** standard (HZDR)
- **AI** to improve productivity (UHH & DESY)
- Capability to study **long-time plasma dynamics**

Understanding ultimate repetition rate limits of plasma accelerators Long-time-scale plasma dynamics challenge current capabilities

- Need to simulate > 10⁴ plasma oscillations to investigate plasma recovery
- Requires new ideas and new low-noise codes
- Critical to understand energy dissipation, power density limits, repetition rate limits
- Will catalyze the experimental progress at FLASHForward and beyond

New group on Plasma Accelerator Theory and Simulations

State-of-the-art code development

- WarpX full 3D electromagnetic, open-source, GPU (LBNL)
- **FBPIC** quasi-RZ, Python, **open-source, GPU** (LBNL, UHH, DESY)
- **Hipace** quasi-static, 3D, work in progress... (DESY, LBNL)

Enabling ensembles of S2E multi-physics simulations

- Adoption of the **openPMD I/O** standard (*HZDR*)
- **AI** to improve productivity (UHH & DESY)
- Capability to study **long-time plasma dynamics**

Progress in Plasma Booster R&D at FLASHFORWARD **Summary and outlook**

Develop a self-consistent plasma-accelerator stage with high-efficiency, high-quality, and high-average-power

High efficiency

Transfer efficiency

Driver depletion

Emittance preservation

Impactful and exciting research programme will help advance plasma accelerators to application-readiness

