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FBPIC simulation

Electron beam can be externally injected 
or formed from trapped plasma electrons (internal injection)

~10 – 100 µm

Plasma wakefields can sustain accelerating fields of up to ~1-100 GV/m 
with focusing gradients above ~1 MT/m

x1000 more than 
RF technology

simulation by Ángel Ferran Pousa (2020)

Plasma accelerators are a centimeter-scale source of GeV beams
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Our customers: high-energy physics and photon science
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Luminosity distribution across collision energies. 
Source: M. Boronat et al., Phys. Lett. B 804, 135353 (2020).
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Low emittanceLow energy spread 
(luminosity spectrum, final focusing)

High energy efficiencyHigh repetition rate

> Energy efficiency motivates use of beam-driven plasma acceleration.

η = ηwall→DB × ηDB→WB

Beam-drivers are orders of magnitude more efficient  
than laser-drivers (for now)

> High-energy physics and photon science demand high(est) energy at low cost.


> Solution: Plasma accelerators — significantly higher acceleration gradients.


> Simultaneously, particle colliders have strict demands for luminosity: 
(FELs have similar demands for brightness)
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Primary goal of FLASHFORWARD‣‣ 
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Develop a self-consistent plasma-accelerator stage 
with high-efficiency, high-quality, and high-average-power

High beam quality 

Energy-spread preservation 
Emittance preservation

High average power 

High repetition rate

High efficiency 

Transfer efficiency 
Driver depletion
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FLASHFORWARD‣‣ utilizes FLASH superconducting accelerator
Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality
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BC3BC2ACC1 ACC23 ACC45 ACC67

ACC39

Photo 
cathode

FLASH 1

FLASH 2ACC → SCRF modules
BC → Bunch compressors

> FLASH is an FEL user facility 
- 10% of beam time dedicated 

to generic accelerator research

> Superconducting accelerator based on ILC/XFEL technology  
- ≲ 1.25 GeV energy with ~nC charge at few 100 fs bunch duration

- ~2 µm trans. norm. emittance

- ~10 kW average beam power, MHz repetition rate in 10 Hz bursts

- exquisite stability by advanced feedback/feedforward systems


> Unique opportunities for plasma accelerator science
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FLASHFORWARD‣‣ utilizes FLASH superconducting accelerator
Plasma accelerator tightly integrated into facility and benefits from Free-Electron Laser beam quality
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BC3BC2ACC1 ACC23 ACC45 ACC67

ACC39

Photo 
cathode

FLASH 1

FLASH 2ACC → SCRF modules
BC → Bunch compressors

FLASHFORWARD‣‣
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R. D’Arcy et al., Phil. Trans. R. Soc. A 377, 20180392 (2019)
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Advanced collimator system for longitudinal bunch shaping
FLASHFORWARD‣‣ beamline features innovative components and methods
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(e)
S. Schröder et al., 
J. Phys. Conf. Ser. 1596 012002 (2020)

Three energy collimators: 
(1) Tail (high energy) 
(2) Head (low energy) 
(3) Central notch (two bunches) 

µm-precision movements 

allows for precise bunch shaping 
(in conjunction with 
FLASH compressors and 3.9 GHz cavity)
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Two discharge capillaries provide density controllable plasma
FLASHFORWARD‣‣ beamline features innovative components and methods
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J.M. Garland et al., 
Rev. Sci. Instrum. 92 013505 (2021)

High-voltage discharge 

Sapphire capillaries  
(50 mm and 195 mm long) 
Gases: He, Ne, Ar, Kr, H (soon),
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Two-BPM tomography enables accurate beam focus characterization
FLASHFORWARD‣‣ beamline features innovative components and methods
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C.A. Lindstrøm et al., 
PRAB 23, 052802 (2020)



Page 00 |  Jens Osterhoff  |  MT Days  |  February 3, 2021

PolariX cavity enables 6D phase space measurements
FLASHFORWARD‣‣ beamline features innovative components and methods
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PolariX X-band cavity (12 GHz) 
for femtosecond resolution 

Polarizable streak (any direction) 
allowing 6D phase space measurements

B Marchetti et al., accepted for publication 
in Scientific Reports (2021) 

P. Craievich et al., 
PRAB 23 112001 (2020)
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PolariX allows for diagnosis of head-to-tail beam tilts
FLASHFORWARD‣‣ beamline features innovative components and methods
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Tilt-curvature 2D scan
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• T.J. Mehrling et al., PRL 118, 174801 (2017)

• T.J. Mehrling et al., Phys. Plasmas 25, 056703 (2018)

• A. Martinez d.l.O. et al., PRL 121, 064803 (2018)

Hosing theory and control

> Head-to-tail centroid offsets are 
sources of collective beam-
instabilities in plasma (“hosing”)


> Tweaking two magnets in the 
FLASHForward beamline 
controls and compensates for tilt

Tilt-curvature 2D scan
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1.1 GeV energy gain and loss achieved in a 195 mm plasma module
Plasma accelerator essentials — demonstrating 6 GV/m field strength

Mean spectrometer image
Imaging energy = 6 MeV

5 10 15 20 25 30 35 40
E (MeV)

-5

0

5

x 
(m

m
)

20

40

60

80

100

120

140

C
ha

rg
e 

de
ns

ity
 (c

ou
nt

s)

Spectrometer image
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Initial energy: 1100 MeV Initial energy: 1100 MeV

Energy extraction ➞ plasma beam dump (+ efficiency) Energy doubling to 2.2 GeV ➞ plasma booster

First realization of deceleration to rest
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Optimal beam loading enables uniform and efficient acceleration
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experimental observation window, we assume a symmetric
beam driver and perform simulations in cylindrical coordi-
nates. The drive-bunch parameters are deduced from refer-
ence shots with the second jet switched off, i.e., 520 pC at
150 MeVand 14-μm width at the second jet. The simulation
window has a size of ðr × zÞ ¼ ð45 × 440Þk−2p , at a reso-
lution of Δr ¼ Δz ¼ 0.033k−1p , with n0 ¼ 6 × 1018 cm−3

inferred from interferometry measurements. In each cell of
the mesh, four electron and four ion macroparticles are
initialized.
The simulations [see Figs. 4(b)–4(e)] indeed show a

conelike structure appearing in the ion distribution in the
trail of the wake. While our shadowgraphy diagnostic is
sensitive to diffraction caused by changes in the local
electron density, the ion distribution itself is not visible.
However, the plasma-wave decays after around 400 μm
behind the driver such that the large charge imbalance
vanishes and the plasma becomes quasineutral, leading to
approximately equal electron and ion distributions from
400 to 700 μm. As a result, also the electron distribution
exhibits the cone-shaped structure, which allows us to
observe this ion motion using shadowgraphy.
For better comparison with the experimental data,

we simulate the propagation of the probe through the
electron distribution calculated in the PIC simulation
(see the Appendix for more information). The synthetic

shadowgram, shown in Fig. 4(b), is in excellent agreement
with the experimental data and reproduces the same
diffraction features. The radial velocity of the ion momen-
tum mivsim⊥ ∼ 4 keV=c is also compatible with the mea-
sured miv

exp
⊥ ¼ 4.1þ1.6

−1.4 keV=c.
However, our analysis shows that the mechanism caus-

ing the ion motion differs from common ion channel
formation due to Coulomb explosion [56,57]. While a
Coulomb explosion leads to a radial expulsion of ions,
and, hence, an annularly shaped distribution, the ion
density in our simulations also increases close to the
propagation axis. The reason for this is that the ions in a
plasma wave experience radial focusing and defocusing
fields in alternation. The net effect of such oscillating forces
can be calculated using the ponderomotive formalism.
In the nonrelativistic limit, which is justified since v⊥ ¼
0.0017 c ≪ c, the ponderomotive force exerted by the
plasma wave is [58]

F⃗pond;PW ¼ −
e2

4ω2
p
∇⃗jE⃗PWj2; ð4Þ

where E⃗PW is the local amplitude vector of the wakefield. In
contrast to the well-known ponderomotive force of a laser
pulse, the plasma-wave amplitude remains almost constant

(a1)

(a2)

(a3)

(a4)

(a5)

(b)

(c)

(d)

(e)

FIG. 4. Ion-channel formation from a plasma wakefield. Left: (a) Raw shadowgrams showing electron-driven plasma waves
(propagating to the right) and their trailing ion channels for five consecutive shots. The dashed lines in the lower shadowgram
exemplarily show the maxima of the ion distribution (via the electron distribution), the radial velocity of the maxima ṽ and the
momentum of an ion with p̃ ¼ miṽ. Right: Corresponding particle-in-cell simulations and synthetic shadowgram (b). The electron (c)
and ion densities (d) clearly show quasineutrality after several plasma-wave periods. The channel in the synthetic shadowgram is in
excellent agreement with the measured ones. The ion trajectories (e) on a radially scaled ion density from (d) show that ions close to the
symmetry axis are accelerated towards the axis, while ions with r0⪆2k−1p are accelerated away from it. Arrows along with the color scale
indicate the instantaneous momenta.
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Image source: M. F. Gilljohann et al., Phys. Rev. X 9, 011046 (2019)

> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric 
fields in a plasma decay very rapidly (Q ~ 1–10).


> The energy needs to be extracted very rapidly 
—ideally within the first oscillation.
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Optimal beam loading enables uniform and efficient acceleration
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> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric 
fields in a plasma decay very rapidly (Q ~ 1–10).


> The energy needs to be extracted very rapidly 
—ideally within the first oscillation.


> Solution: Beam loading 
The trailing-bunch wakefield “destructively interferes” with 
the driver wakefield—extracting energy. 

> Problem 2: to extract a large fraction of the energy, the beam will 
cover a large range of phases (~90 degrees or more).


> Large energy spread is induced.

Image credit: M. Litos et al., Nature 515, 92 (2014)

> Not (easily) possible: 
Dechirping

R. D'Arcy et al., 
PRL 122, 034801 (2019)
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> Problem 1: Compared to RF cavities (Q ~ 104–1010), the electric 
fields in a plasma decay very rapidly (Q ~ 1–10).


> The energy needs to be extracted very rapidly 
—ideally within the first oscillation.


> Solution: Beam loading 
The trailing-bunch wakefield “destructively interferes” with 
the driver wakefield—extracting energy. 

> Problem 2: to extract a large fraction of the energy, the beam will 
cover a large range of phases (~90 degrees or more).


> Large energy spread is induced.


> Solution: Optimal beam loading 
The current profile of the trailing bunch is precisely tailored 
to exactly flatten the wakefield.


> This requires extremely precise control of the current profile.


> FLASHForward provides the tools to do that. Image credit: M. Tzoufras et al., Phys. Rev. Lett. 101, 145002 (2008)
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High-resolution plasma wakefield sampling demonstrated
Opens a pathway to targeted and precise field manipulation

19

> Beam itself acts as a probe 
➞ measures in-situ (under actual operation conditions) the effective field acting on beam with µm / fs resolution
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S. Schröder et al., Nat. Commun. 11, 5984 (2020)
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Loading the wakefield and beam shaping flattens the gradient
Direct visualization of electric-field control by wakefield sampling

21
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> Accelerating gradient of 1.3 GV/m


> Energy gain 45 MeV (over 3.5 cm distance) of 100 pC witness, 
with energy spread of 1.4 MeV FWHM and no charge loss

> Few-percent-level wakefield flattening demonstrated

C.A. Lindstrøm et al., PRL 126, 014801 (2021)
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High-quality, efficient acceleration for sustainable applications
Beam-loading facilitates 42% energy-transfer efficiency, 0.2% energy spread with full charge coupling

22

> (42±4)% energy transfer efficiency 
(improvement by factor 3 over state-of-the-art)

> 0.2% energy spread (input 0.16%) 
(improvement by factor 10 over state-of-the-art)
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> Accelerating gradient of 1.3 GV/m 

> Energy gain 45 MeV (over 3.5 cm distance) of 100 pC witness, 
with energy spread of 1.4 MeV FWHM and no charge loss 
> Few-percent-level wakefield flattening demonstrated

C.A. Lindstrøm et al., PRL 126, 014801 (2021)
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FLASHFORWARD‣‣ roadmap aims at 10 kW with high beam quality
Plan covers major plasma accelerator challenges

23

2018

2030

Energy spread preservation by beam loading control
• Lindstrøm et al., PRL 126, 014801 (2021)

2019

Detection of slice properties with fs resolution

kHz-to-GHz plasma response

Emittance preservation

10 kW avg. power operation

2022

2024

High overall efficiency and gain for sustainable operation

2026

Plasma dechirper
• D’Arcy et al., PRL 122, 034801 (2019)

Energy depletion and energy doubling

Wakefield sampling
• Schröder et al., Nat. Commun. 11 5984 (2020)

2020
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FLASHFORWARD‣‣ roadmap aims at 10 kW with high beam quality
Plan covers major plasma accelerator challenges

24

2018

2030

Energy spread preservation by beam loading control
• Lindstrøm et al., PRL 126, 014801 (2021)

2019

Detection of slice properties with fs resolution

kHz-to-GHz plasma response

Emittance preservation

10 kW avg. power operation

2022

2024

High overall efficiency and gain for sustainable operation

2026

Plasma dechirper
• D’Arcy et al., PRL 122, 034801 (2019)

Energy depletion and energy doubling

Wakefield sampling
• Schröder et al., Nat. Commun. 11 5984 (2020)

2020

kHz-to-GHz plasma response
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Simulations play a crucial role for research at FLASHFORWARD‣‣
Long-time-scale plasma dynamics challenge current capabilities

25

> Accurate simulations are essential

- to predict new phenomena 
- to prepare and plan experimental studies 
- to verify and analyze measurements

> Simulations for plasma accelerators require High-Performance Computing (HPC)

- ~M core hour for single simulation with full particle-in-cell (PIC) scheme 

➞ ensemble of simulations are (prohibitively) expensive 
- Development of specialized codes / efficient and accurate algorithms critical

> HPC is a dynamic field

- Performance portability on heterogeneous platforms required 
- Inter-operability of HPC tools 
- Advanced numerical methods and AI increasing in importance (➞ ACCLAIM)

> New group on Plasma Accelerator Theory and Simulations

State-of-the-art code development 
- WarpX – full 3D electromagnetic, open-source, GPU (LBNL) 
- FBPIC – quasi-RZ, Python, open-source, GPU (LBNL, UHH, DESY) 
- Hipace – quasi-static, 3D, work in progress… (DESY, LBNL)

Enabling ensembles of S2E multi-physics simulations 
- Adoption of the openPMD I/O standard (HZDR) 
- AI to improve productivity (UHH & DESY) 
- Capability to study long-time plasma dynamics

Maxence Thévenet

Group leader
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Understanding ultimate repetition rate limits of plasma accelerators

26

- Need to simulate 
> 104 plasma oscillations to 
investigate plasma recovery 

- Requires new ideas and 
new low-noise codes 

- Critical to understand 
energy dissipation, power 
density limits, repetition 
rate limits 

- Will catalyze the experimental 
progress at FLASHForward 
and beyond

Long-time-scale plasma dynamics challenge current capabilities

> New group on Plasma Accelerator Theory and Simulations

State-of-the-art code development 
- WarpX – full 3D electromagnetic, open-source, GPU (LBNL) 
- FBPIC – quasi-RZ, Python, open-source, GPU (LBNL, UHH, DESY) 
- Hipace – quasi-static, 3D, work in progress… (DESY, LBNL)

Enabling ensembles of S2E multi-physics simulations 
- Adoption of the openPMD I/O standard (HZDR) 
- AI to improve productivity (UHH & DESY) 
- Capability to study long-time plasma dynamics

Maxence Thévenet

Group leader



• Impactful and exciting research programme will help advance plasma accelerators to application-readiness

Progress in Plasma Booster R&D at FLASHFORWARD‣‣
Summary and outlook

Develop a self-consistent plasma-accelerator stage 
with high-efficiency, high-quality, and high-average-power

High beam quality 

Energy-spread preservation

Emittance preservation

High average power 

High repetition rate

High efficiency 

Transfer efficiency

Driver depletion

✓ ✓


