Online detuning computation and quench detection for SRF Resonators

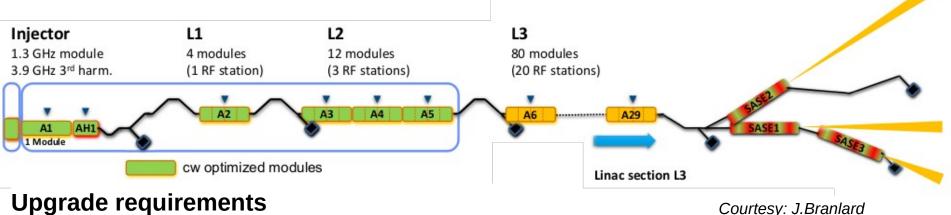
An FPGA based implementation

Andrea Bellandi 7th MT meeting, 3/2/2020

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

From pulsed to continuous 1/2

Upgrade objectives


- Current Short Pulse (SP) mode has a duty factor of 0.6 % and produces up to 27000 bunches per second @ 17.5 GeV
- Add the possibility to drive European XFEL at 8 GeV in CW or ~12 GeV at reduced duty factor (Long Pulse or LP)
- Beam energy is traded with an increased bunch spacing

(8 GeV @ 100 kHz vs 17.5 GeV @ 4.5 MHz)

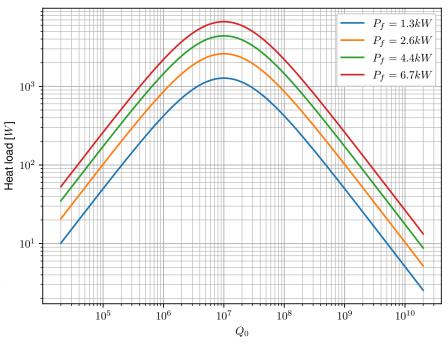
- \rightarrow advantageous for experiments
- Operation at 1 MHz also possible

From pulsed to continuous 2/2

- **Upgrade requirements**
- Double the available cryogenic power at 2 K
 - $2.5 \text{ kW} \rightarrow 5 \text{ kW}$
- Add a CW-optimized Gun
- Substitute the accelerating modules in the Injector/L1/L2 with higher quality factor ones. Main coupler modifications necessary
- Add 120 kW Inductive Output Tube (IOT) as CW RF power source.

Talk from Dmitry Bazyl : SRF photo injector development for the European XFEL Today 10:30

From pulsed to continuous: an LLRF perspective


Additional LLRF requirements

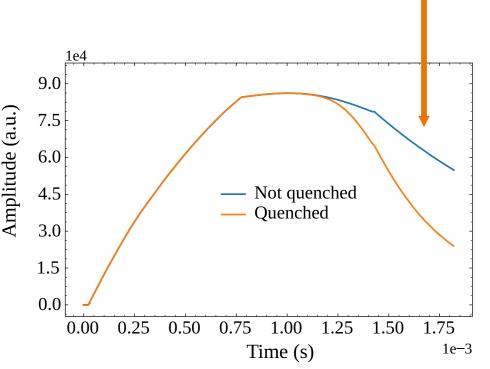
- Capability to operate the machine either in CW, LP or SP mode
- Operate superconducting cavities at very narrow bandwidths (65 Hz – 10.8 Hz)

Few nanometer deformations can modify the RF power requirements significantly.

- An active way to compensate for tuning errors is required
- Quenches have to be detected in few hundreds microseconds to limit excessive cavity heat load

Heat load at different Q₀ values

Quench detection: pulsed vs continuous wave Pulsed mode


 Uses probe decay to compute the cavity Q_L

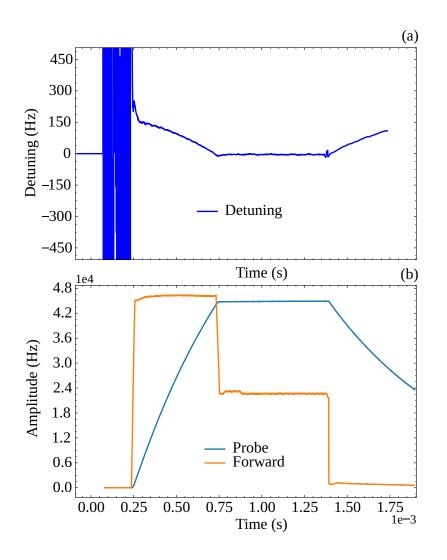
$$\frac{1}{Q_L} = \frac{1}{Q_{ext}} + \frac{1}{Q_0} \qquad Q_L = \tau \pi f_0$$

- If the cavity Q_L is smaller than a certain threshold, a quench is detected
- Detuning-resistant algorithm

CW mode

- No decay!
- A quench detector has to discriminate between real quenches and detuning generated gradient drops.

Field decay


Detuning estimation and control: pulsed vs continuous wave

Pulsed mode

- Detuning is driven by the periodic RF pulse radiation pressure
- Detuning estimation and resonance control can be performed between two RF pulses
- Due to the repetitive nature of the resonance disturbance, iterative algorithms can be used

CW mode

- Disturbances are uncorrelated from machine timing
- An effective resonance controller has to perform an online correction

Quench detection and detuning estimation

Inverse model based approach How it works

- Some studies were already done in the past^{1,2}
- It uses an inverse cavity model³ to compute simultaneously cavity bandwidth (which is inversely proportional to Q_L) <u>and</u> detuning

$$\begin{split} \dot{I}_{p} \\ \dot{Q}_{p} \end{bmatrix} &= 2\pi \begin{bmatrix} -f_{(1/2)} & -\Delta f \\ \Delta f & -f_{(1/2)} \end{bmatrix} \begin{bmatrix} I_{p} \\ Q_{p} \end{bmatrix} + 2\pi B \begin{bmatrix} I_{b} \\ Q_{b} \end{bmatrix} + 2\pi K \begin{bmatrix} I_{f} \\ Q_{f} \end{bmatrix}, \\ K &= \frac{f_{0}}{Q_{ext}}, \quad B = \frac{f_{0}}{2} \frac{r}{Q}, \quad f_{(1/2)} = \frac{f_{0}}{2Q_{L}}, \end{split}$$

$$\begin{aligned} f_{(1/2)} &= \frac{I_{p}(KI_{f} - \dot{I}_{p}/2\pi + BI_{b})}{I_{p}^{2} + Q_{p}^{2}}, \\ \Delta f &= \frac{Q_{p}(KI_{f} - \dot{I}_{p}/2\pi + BI_{b})}{I_{p}^{2} + Q_{p}^{2}}, \\ \Delta f &= \frac{Q_{p}(KI_{f} - \dot{I}_{p}/2\pi + BI_{b})}{I_{p}^{2} + Q_{p}^{2}}, \\ - \frac{I_{p}(KQ_{f} - \dot{Q}_{p}/2\pi + BQ_{b})}{I_{p}^{2} + Q_{p}^{2}}. \end{split}$$

¹(Rybaniec, Radoslaw, et al. "Real-time estimation of superconducting cavities parameters." Proc. 5th Int. Particle Accelerator Conf.(IPAC'14). 2014.)

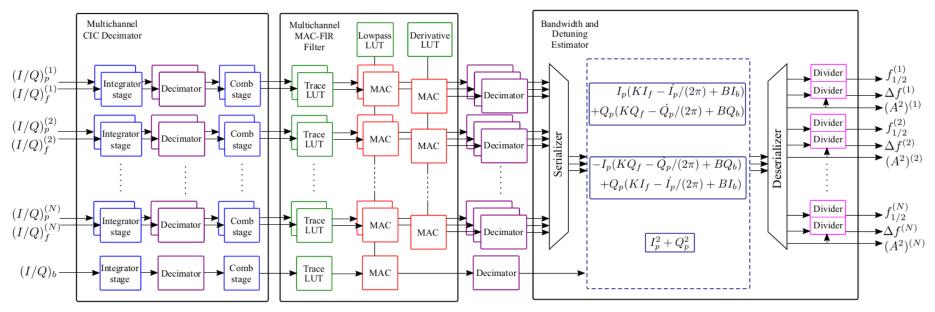
²(Echevarria, P, et al. "Simulation of quench detection algorithms for Helmholtz Zentrum Berlin SRF cavities." Journal of Physics: Conference Series. Vol. 1350. No. 1. IOP Publishing, 2019.)

³(Schilcher, T. Vector sum control of pulsed accelerating fields in Lorentz force detuned superconducting cavities. No. TESLA-98-20. DESY, 1998.)

Quench detection and detuning estimation

Requirements and hardware

Requirements


- Few hundreds µs to detect a quench
 → realtime FPGA computations
- Hertz detuning resolution
- Target clock frequency 125 MHz Boards
- MTCA.4 based
- SIS8300L2 SIS8300-KU
 - \rightarrow single cavity regulation
- DAMC-TCK7 DAMC-FMC2ZUP
 - \rightarrow VS of 16 cavities

https://techlab.desy.de

Quench detection and detuning estimation

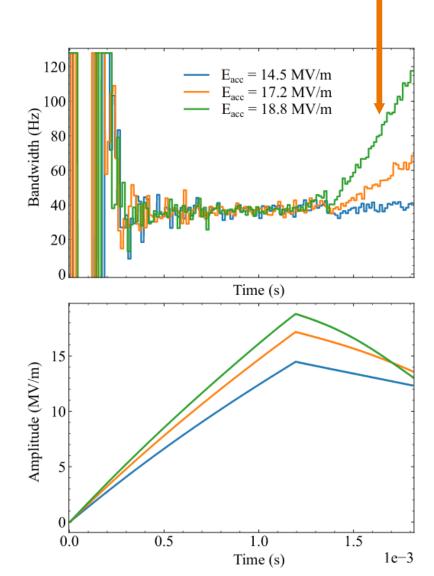
Model scheme

Structure

- A chain of Cascaded Integrator-Comb (CIC) and and Multiply-Accumulate FIR, filters and decimates the sample rate from 9.027 MHz → 72.2 kHz
- A serial structure is used to compute the cavities bandwidth and detuning

COMPONENT RESOURCE UTILIZATION ON XC7K420T.

Cavity channels	1	2	8	16	Total
Lookup tables (%)	0.6	1.2	4.4	8.6	260600
Block RAMs (%)	0.5	0.8	3.0	5.9	835
Flip flops (%)	0.6	1.2	4.7	9.4	521200
DSP slices (%)	1.2	1.7	4.5	8.3	835


Experimental tests

Pulsed tests: CMTB

Results

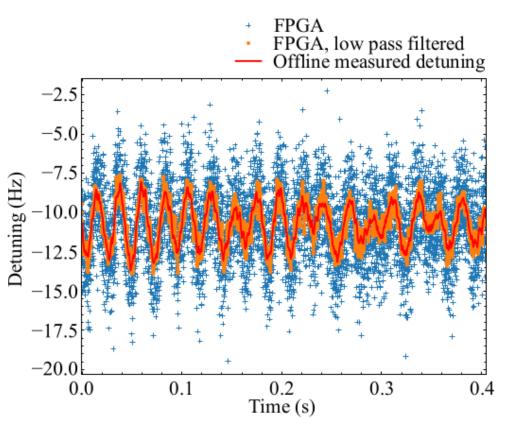
- Able to detect loss of Q₀ in realtime
 Detection happens when Q₀~10⁸
- Latency of 170 μ s (optimizable)
- MSE errors on detuning of few Hertz

Bandwidth increases due to multipacting

ESTIMATION ERRORS FOR PULSED MODE OF OPERATION.

$Q_L \ (\cdot 10^7)$	0.62	1.23	2.47	4.88
Bandwidth (Hz)	209.7	105.7	52.6	26.6
Average bandwidth offset (Hz)	-10.36	-1.50	-1.89	0.00
Bandwidth MSE (Hz)	12.88	8.38	8.20	12.05
Average detuning offset (Hz)	-5.54	0.16	-1.85	1.54
Detuning MSE (Hz)	7.38	4.50	6.82	5.91

DESY.


Experimental tests

CW tests: CMTB

Results

- Sub-Hertz average detuning offset
- Sub-Hertz MSE detuning error (after 1kHz filtering)
- Few Hertz MSE bandwidth error

It was not possible to test quench detection due to radiation interlock!

ESTIMATION ERRORS FOR CW MODE OF OPERATION.

$Q_L \ (\cdot 10^7)$	0.50	1.00	2.02	4.17
Bandwidth (Hz)	260.0	130.0	64.4	31.2
Average bandwidth offset (Hz)	-0.61	1.51	-1.43	0.91
Bandwidth MSE (Hz)	4.15	3.75	3.21	4.63
Average detuning offset (Hz)	0.01	-0.02	0.02	0.00
Detuning MSE (Hz)	3.08	2.65	2.26	3.43
Filtered detuning MSE (Hz)	0.87	0.77	0.69	0.98

Experimental tests

CW tests with beam: ELBE

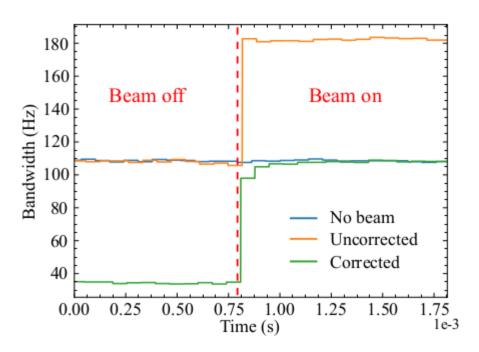
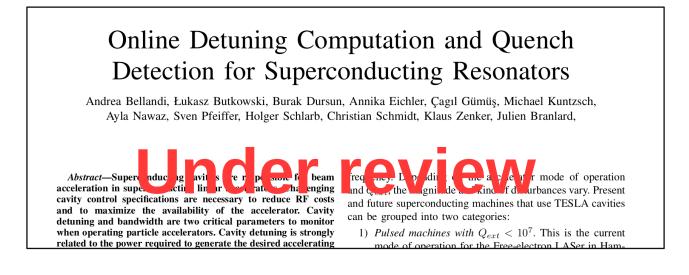



TABLE IV BANDWIDTH ERRORS IN PRESENCE OF BEAM LOADING.

Gun current (µA)	600	450	300	150
Average bandwidth offset (Hz)	-0.88	0.62	-0.39	-0.19

Results

- Beam loading correction works!
- The component will help HZDR operators in optimizing the detuning
- HZDR wrote a support package for the estimator



Final remarks

- A Vector-Sum ready FPGA-based component was tested
- The estimator fullfills delay (170 μs) and precision (~Hz) requirements for both detuning and bandwidth
- It was not possible to perform a quench detection in CW due to limitations of the facility. However pulsed tests and simulations suggest that the component is capable of such a task
- Next step: program a resonance controller that uses estimated detuning for LFD/microphonics compensation

Thanks to

L. Butkowski, B. Dursun, A. Eichler, Ç. Gumus, A. Nawaz, S. Pfeiffer, H. Schlarb, C. Schmidt and J. Branlard Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany

M. Kuntzsch and Klaus Zenker Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany.

Special thanks to

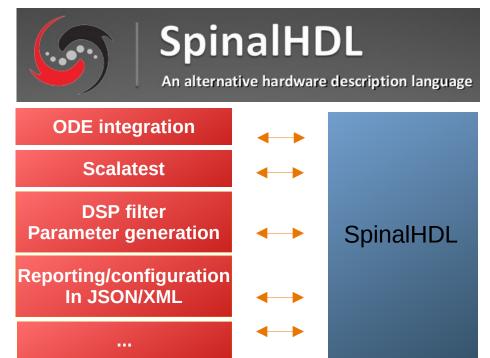
C. Papon, author of SpinalHDL

(See https://spinalhdl.github.io/SpinalDoc-RTD/)

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de


Andrea Bellandi MSK andrea.bellandi@desy.de

Experimental tests

Technical details

The component was programmed in SpinalHDL

- It is an Hardware Description Language (HDL) just like VHDL and Verilog <u>not HLS</u>
- Provide abstracted functionalities through an object-oriented interface
- SpinalHDL components are converted in VHDL or Verilog
- SpinalHDL can use the Java libraries for metaprogramming / generation / testing and cosimulation tasks

COMPONENT RESOURCE UTILIZATION ON XC7K420T.

Cavity channels	1	2	8	16	Total
Lookup tables (%)	0.6	1.2	4.4	8.6	260600
Block RAMs (%)	0.5	0.8	3.0	5.9	835
Flip flops (%)	0.6	1.2	4.7	9.4	521200
DSP slices (%)	1.2	1.7	4.5	8.3	835

See https://spinalhdl.github.io/SpinalDoc-RTD/