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Accelerator Facilities at KIT &‘(IT

Karlsruhe Research Accelerator (KARA) Karlsruhe Institute of Technology
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Coherent Synchrotron Radiation (CSR
y (CSR) AT

M I C rO = b U n C h I n g I n Stab I I Ity Karlsruhe Institute of Technology

Coherent synchrotron radiation (CSR) is generated when the wavelength of the emitted
radiation is in the order of magnitude of the bunch length.

High-power THz radiation - interesting for user = Issue: substructures appear
(fast dynamics) - CSR power
Low- a. optics fluctuates

(compact mode)
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Coherent Synchrotron Radiation (CSR) A‘(IT
B

Tallor the power output for usage in THz experiments Karlsruhe Institute of Technolooy

= The CSR self-interaction contributes to the effective potential that the beam is subjected to,
and is continuously changing during micro-bunching dynamics

= GOAL: CSR stabilization with high average (power) and low variance

- IDEA mOdUIatlng the RF Voltage (amplltUde) Mitigation via Dynamic RF Amplitude Modulation
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Complex beam physics requirements &‘(IT

Special hardware and processes Karlsruhe Institute of Technology

Complex and nonlinear dynamics in longitudinal / transverse bunch profiles formally
described by a nonlocal nonlinear partial differential Vlasov fokker planck equation

Experimental requirements are:

Direct sampling of “each” THz beam with a time resolution of few
picoseconds @ 1 GPulse/s, very long observation time (hours)

High performance data acquisition readout card, continuous data
streaming and processing of all pulses acquired @ data throughput
which exceeds 100 Gb/s

Advanced beam control = by Machine Learned algorithms (ML)
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Complex beam physics requirements &‘(IT

Special hardware and processes Karlsruhe Institute of Technology

Complex and nonlinear dynamics in longitudinal / transverse bunch profiles formally
described by a nonlocal nonlinear partial differential Vlasov fokker planck equation

Experimental requirements are:

Direct sampling of “each” THz beam with a time resolution of few KAPTURE
picoseconds @ 1 GPulse/s, very long observation time (hours)

High performance data acquisition readout card, continuous data

streaming and processing of all pulses acquired @ data throughput HighFlex
which exceeds 100 Gb/s
Advanced beam control =» by Machine Learned algorithms (ML) Reinforcement

Learning on FPGA
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KAPTURE version 2
AT

Ultra-fast sampling-system for ultra-fast detectors Karlsruhe Institute of Technolooy

Fast ADC Track-and-hold
SiGe front-end

= Karlsruhe Pulse Taking Ultra-fast Readout Electronics (KAPTURE)
is an ultra-wideband readout electronics for ultra-fast Terahertz
detectors

F : -

Jitter-cleaning
PLL (120 fs)

Samtec FMC
connector

Terahertz detector pulse

J

8 Sampled points
by KAPTURE

200+

Sampling time of 3 ps, local sampling frequency > 300 GS/s

Up to 1 GHz pulse repetition rate
100+

Pulse amplitude (mV) and arrival time (ps) accuracy

Real-time pulse sampling for long observation time

Detector response (mV)

0- 40 ps

305 | 306 307 308 309 Designed for bunch-to-bunch acquisition of the THz

Time (ns) coherent synchrotron radiation
M. Caselle etal., JINST 12 C01040 (2017)
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KAPTURE-2 (performance)

Ultra-fast sampling-system for ultra-fast detectors

AT
= Local sampling frequency > 300 GS/s with a pulse rate of 1 GPulse/s
= Commissioning to KARA

Karlsruhe Institute of Technology

80 Timescan = Fast sampling of THz detector pulse
70 —— Fit EMG by KAPTURE-2
60 -== Fit Gaul
250 Pulse amplitude | = Gaussian and an exponentially
§40 < 100 mV ‘\ Pulse width ~ modified Gaussian (EMG) curves
O % 60ps are fitted by GPU
<Or 30 \\
20 \\ = Excellent SNR
10
O _____________
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J.L. Steinmann et al. doi;:10.18429/JACoW-IPAC2019-WEPGWO017
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Courtesy: M. Brosi, KIT

KAPTURE-2 — Recent highlight  por: 10.5445/1R/1000120018 N(IT
Shot-to-shot measurement of CSR at different spectral range St miwes rmoes

* On-chip THz spectrometer (TU Dresden, N. Neumann):
* 14mmx 2.4 mm
« 8 antennas 50 GHz - 700 GHz (~10% relative bandwidth)
« Connected to Schottky diode detector elements

« KAPTUREZ2 in 8 channel mode for parallel readout

Insight into the long. dynamics R 10°
* Micro-structures on long. phase -
space lead to fluctuations in

emitted CSR power
« Similar fluctuation pattern in
different spectral ranges
« Differences in relative strength
of fluctuation frequencies
= Dynamic changes in the shapes 3o 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
of the micro-structures FIEqUEnKS./ khz FrEqUENEy | kiiz
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Hardware for Dynamic Real-time control A‘(IT
HighFlex version 2

Karlsruhe Institute of Technology

Sl None of the commercial read-out cards fulfill our
- (s ' nt
requirements We developed , a

Duplex FireFly

*

USB UART

B customized read out card based on

Xilinx Zynqg Ultrascale+ MPSoC

S = FEATURES
- o

12 duplex FireFly data link (336 Gbps)

FMC+ 0 PCle Gen 3 and Gen 4 (240 Gbps)
8 DDR4 Chips for Programmable Logic
=
(PL)
"""" Ethernet, SD, USB for PS
Programmable Logic
~  DDR4 (2GB)
Programmable PLL PCle x16 Ex(;tlfsfs
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Hardware for dynamic real-time control ‘(IT
HighFlex-2 A\

Karlsruhe Institute of Technology

PS ARM DDR4 (4GB SODIMM)

Team work done at IPE

Schematic, layout, production

& i Printed Circuit Board (PCB)
gl ¥ 22 layers
= : ‘ MEGTRON 6 dielectric material

HighFlex-2 is a sophisticated and
it high-end board

Many applications within and beyond
beam diagnostics

Zynq architecture is an optimized Hardware-platform for machine learning algorithms!
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%, KT

= Closed feedback loop at KARA: THz detector 7

= Detection of signals with THz detectors and i ‘jxp.‘
KAPTURE @ 500 MPulse/s -

= Data processed by Reinforcement Learning on FPGA

THz intensity (mV)
Arrival time (ps)

= FPGA action as special RF signal modulation is sent

to the kicker cavity Feedback

= Goal: total latency of control feedback loop <<'1 ms

action

= Target applications: KARA, FLUTE, ARES and more

HighFlex-2 card
= Status: first beam control on FPGA developed within Al deployed in the FPGA
AMALEA - will continue in ACCLAIM (Helmholtz Innovation
fund)

MicroTCA
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Reinforcement Learning (RL) N(IT
[\

Goal-directed learning from interaction with an enviroNMent  carsrune mstiute of Technoloy

= RL algorithms are capable to learn purely from interaction with a real environment

= The RL interacts with the environment to maximize the reward, = CSR stabilization with
high average (power) and low variance

= No pre-existing set or training (labelled) data are necessary
RL neural network

- p
The Critic neural network updates _[ Critic
both weights and biases in order to State S( Welghts & Biases
maximize the reward (self-learning)
KAPTURE Y, Action a(t)
The same RL algorithm can be s
applied in various applications THz Jm[ KARA (Environment)
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Hardware implementation &‘(IT

Reinforcement Learning on modern programable device Karlsruhe Institute of Technolooy

Deep Deterministic Policy Gradient (DDPG) = Using DDPG to control micro-
bunching instability at KARA

Critic Training Process

[FPGA - PL TD-error

Reward Reward [ 7]
calculation J siace (1) Critic

Feature extraction

ARM - PS

= The training is located on ARM for a
fast and flexible training

Policy
gradient

PS Memory

Actor Training
State (t+1) and a(t) Process

= The inference is located on FPGA

for a fast and real-time control

Bunch-by-
Bunch
interface

RL Framework developed for a easy
deployment of RL algorithms on an
FPGA

KARA (Environment)

RF cavity
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Hardware implementation &‘(IT

Reinforcement Learning on modern programable device Karlsruhe Institute of Technolooy
= =]
Deep Deterministic Policy Gradient (DDPG | i | RAVER .
g g ( ) o . Critic
VFPGA- BL Crltlc-:lr)a-::ogrPrucess ARM - PS E; . I();‘I {)5‘- LO

Policy
gradient

i ¥

Reward Reward [ 7]
calculation J siace (1) Critic

Feature extraction

Critic neural network and the policy
gradient are implemented as bare-metal
Actor Training application on ARM processor

Process

PS Memory

M State (t+1) and a(t)

FFT

Tiger  2ioper
o I ™
N L)

=

a_f‘_"n:’m'n, BUI’lCh'bV’ i : e (O O O O
phi_f_main Bunch - 7 »
interface . 8 ) ACtOI’
+ O i B i [ o f e /@
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¢ { { {
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= p(Scurren: | 8")
KARA (Environment) Actor consists of four fully-connected

RF cavity

KAPTURE

dense layers, each layer consists of 64
neurons using a rectified linear unit
(ReLU) as activation function in FPGA
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RL hardware implementation results (l)
CSR behaviour and amplitude modulation to RF cavity

AT

Karlsruhe Institute of Technology

0.146

0.144( |

CSR signal during the training episode

Single-training-episode

|
= \
01424
201401 |
o

= |
o 0.1381
%]

Q
0.136 |

0.134

0.0

RF amplitude modulation (from RL controller)

0.8 1.2

time (ms)

0.2 0.4 0.6

1.01001

i

1.0075 4/

B 1.0050 1|
=]

i N, " nofop

=
= 1.0025

£
© 1.0000
[T

& 0.9975

G 0.9950
c

0.9925

0.9900

0.0

0.2 0.8 1.4

time (ms)

MT Annual Meeting

RL on FPGA

RL start to learn how
control the CSR
fluctuation

RL stop because the
received reward is
very low
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RL hardware implementation results (II) N(IT
B\

Comparison between hardware and Keras implementation  crisne miute of Technolooy

il T | RL on FPGA
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The hardware implementation generates the similar behavior compared to Keras
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RL hardware implementation results (lII) N(IT
B\

Time performances of the Inference and training phases Karlsruhe Institute of Technolooy

= Comparison between the KIT- RL controller on ZYNQ and the software implementation
deployed on CPU and GPUs

Inference 200 pus 557 us 17 us FPGA

Training 1800 pus 6037 us 1648 ps ARM

= The inference deployed in FPGA is extremely fast
= FPGA is the natural interface to detector and actor

= Optimized code on Zyng ARM has acceptable performance for RL during the training

HighFlex-2 is an optimized platform for Reinforcement Learning
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MT Annual Meeting 2021



Conclusions &‘(IT

Karlsruhe Institute of Technology

Very challenging topic: High-dimensional, nonlinear (collective), fast beam dynamics in
femtosecond time scale

Control of the longitudinal bunch profile for stabilization and automatic start-up

Could be transferred for real-time optimization of plasma accelerators and their laser
systems

Control-feedback-system and algorithms could be transferred to two similar facilities (ARES
and FLUTE)

Fast ML inference deployed in FPGA
Design of custom readout cards optimized for Al applications
Excellent agreement between hardware and software (Keras-RL) implementations

Deep Deterministic Policy Gradient as demonstrated very low latency of 17 ps, which well
satisfied the KARA requirement
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