

RESEARCH FOR GRAND CHALLENGES

<u>A. Ebersoldt</u>, M. Caselle, T. Boltz, M. Brosi, T. Dritschler, A. Santamaria García, A. Kopmann, M. M. Patil, W. Wang, E. Bründermann, M. Weber, A.-S. Müller

#### Accelerated Deep Reinforcement Learning for Fast Feedback of Beam Dynamics at KARA



www.helmholtz.de

# Accelerator Facilities at KIT

#### Karlsruhe Research Accelerator (KARA)



- Electron storage ring and synchrotron light source
- KARA: one of the 1st to offer short bunch down to few millimeters, which enables to study the microbunching instability
- Advanced custom detectors developed for a real-time resolved phase space tomography:
  - KAPTURE: for bunch-to-bunch measurement of THz beam
  - KALYPSO: for both longitudinal and horizontal bunch profiles



Caselle M., et al. KAPTURE-2. A picosecond sampling system for individual THz pulses with high repetition rate. JINST (2017), DOI: 10.1088/1748-0221/12/01/C01040

Rota, L., Caselle M., et al. KALYPSO: Linear array detector for high-repetition rate and real-time beam diagnostics. NIM A (2018), DOI: <u>https://doi.org/10.1016/j.nima</u>

Kehrer B., et al. Synchronous detection of longitudinal and transverse bunch signals at a storage ring. *Phys. Rev. Accel. Beams (2018),* 102803

## **Coherent Synchrotron Radiation (CSR)**

#### Micro-bunching instability



 Coherent synchrotron radiation (CSR) is generated when the wavelength of the emitted radiation is in the order of magnitude of the bunch length.



## **Coherent Synchrotron Radiation (CSR)**

Tailor the power output for usage in THz experiments

 The CSR self-interaction contributes to the effective potential that the beam is subjected to, and is continuously changing during micro-bunching dynamics

Karlsruhe Institute of Technology

GOAL: CSR stabilization with <u>high average</u> (power) and <u>low variance</u>



#### **Complex beam physics requirements**

Special hardware and processes



- Complex and nonlinear dynamics in longitudinal / transverse bunch profiles formally described by a nonlocal nonlinear partial differential Vlasov fokker planck equation
- Experimental requirements are:
  - Direct sampling of "each" THz beam with a time resolution of few picoseconds @ 1 GPulse/s, very long observation time (hours)
  - High performance data acquisition readout card, continuous data streaming and processing of all pulses acquired @ data throughput which exceeds 100 Gb/s
  - Advanced beam control → by Machine Learned algorithms (ML)

## **Complex beam physics requirements**

#### Special hardware and processes

- Complex and nonlinear dynamics in longitudinal / transverse bunch profiles formally described by a nonlocal nonlinear partial differential **Vlasov fokker planck** equation
- Experimental requirements are:
  - Direct sampling of "each" THz beam with a time resolution of few picoseconds @ 1 GPulse/s, very long observation time (hours)
  - High performance data acquisition readout card, continuous data streaming and processing of all pulses acquired @ data throughput which exceeds 100 Gb/s
  - Advanced beam control  $\rightarrow$  by Machine Learned algorithms (ML)



HELMHOLTZ

**HighFlex** 





#### M. Caselle et al., JINST 12 C01040 (2017)

#### MT Annual Meeting 2021

Real-time pulse sampling for long observation time 

#### Designed for bunch-to-bunch acquisition of the THz coherent synchrotron radiation

Pulse amplitude (mV) and arrival time (ps) accuracy

Sampling time of 3 ps, local sampling frequency > 300 GS/s

Up to 1 GHz pulse repetition rate

Terahertz detector pulse



**KAPTURE** version 2

detectors

Track-and-hold Fast ADC SiGe front-end Jitter-cleaning PLL (120 fs) amtec EMC connector

HELMHOLTZ

## Ultra-fast sampling-system for ultra-fast detectors

Karlsruhe Pulse Taking Ultra-fast Readout Electronics (KAPTURE)

is an ultra-wideband readout electronics for ultra-fast Terahertz



#### MT Annual Meeting 2021



# **KAPTURE-2 (performance)**

#### Ultra-fast sampling-system for ultra-fast detectors

- Local sampling frequency > 300 GS/s with a pulse rate of 1 GPulse/s
- Commissioning to KARA



- Fast sampling of THz detector pulse by KAPTURE-2
- Gaussian and an exponentially modified Gaussian (EMG) curves are fitted by GPU
- Excellent SNR





#### MT Annual Meeting 2021

## **KAPTURE-2** – Recent highlight

Shot-to-shot measurement of CSR at different spectral ranges Karlsruhe Institute of Technology

Courtesy: M. Brosi, KIT

DOI: 10.5445/IR/1000120018

- On-chip THz spectrometer (TU Dresden, N. Neumann):
  - 1.4 mm x 2.4 mm
  - 8 antennas 50 GHz 700 GHz (~10% relative bandwidth)

Current / mA

Bunch

- Connected to Schottky diode detector elements
- KAPTURE2 in 8 channel mode for parallel readout

#### Insight into the long. dynamics

- Micro-structures on long. phase space lead to fluctuations in emitted CSR power
- Similar fluctuation pattern in different spectral ranges
- Differences in relative strength of fluctuation frequencies
- $\Rightarrow$  Dynamic changes in the shapes of the micro-structures





HELMHOLTZ





## Hardware for Dynamic Real-time control

#### HighFlex version 2





MT Annual Meeting 2021

## None of the commercial read-out cards fulfill our

We developed HighFlex-2, a customized read out card based on Xilinx Zynq Ultrascale+ MPSoC

#### **FEATURES**

- 12 duplex FireFly data link (336 Gbps)
- PCIe Gen 3 and Gen 4 (240 Gbps)
- DDR4 Chips for Programmable Logic (PL)
- Ethernet, SD, USB for PS

# Hardware for dynamic real-time control HighFlex-2





#### PS ARM DDR4 (4GB SODIMM)

- Team work done at IPE
  - Schematic, layout, production
- Printed Circuit Board (PCB)
  - 22 layers
  - MEGTRON 6 dielectric material
- HighFlex-2 is a sophisticated and high-end board
- Many applications within and beyond beam diagnostics

#### Zynq architecture is an optimized Hardware-platform for machine learning algorithms!

# Control of the complex beam with ML

#### Machine Learning toward Autonomous Accelerators

- Closed feedback loop at KARA:
  - Detection of signals with THz detectors and KAPTURE @ 500 MPulse/s
  - Data processed by Reinforcement Learning on FPGA
  - FPGA action as special RF signal modulation is sent to the kicker cavity
- Goal: total latency of control feedback loop << 1 ms</li>
- Target applications: KARA, FLUTE, ARES and more
- Status: first beam control on FPGA developed within *AMALEA* → will continue in ACCLAIM (Helmholtz Innovation fund)



HELMHOLTZ



## **Reinforcement Learning (RL)**

Goal-directed learning from interaction with an environment

- RL algorithms are capable to learn purely from interaction with a real environment
- The RL interacts with the environment to maximize the reward, → CSR stabilization with high average (power) and low variance
- No pre-existing set or training (labelled) data are necessary



HELMHOLTZ

Karlsruhe Institute of Technology

#### Hardware implementation





- Using DDPG to control microbunching instability at KARA
- The training is located on ARM for a fast and flexible training
- The inference is located on FPGA for a fast and real-time control

RL Framework developed for a easy deployment of RL algorithms on an FPGA

HELMHOLTZ

14

Karlsruhe Institute of Technology

#### Hardware implementation

Reinforcement Learning on modern programable device





## **RL hardware implementation results (I)**

CSR behaviour and amplitude modulation to RF cavity



#### CSR signal during the training episode Single training episode 0.146 0.144 € 0.142 0.140 0.138 0.138 0.136 0.134 0.2 1.2 0.0 0.4 0.6 0.8 1.0 time (ms) RF amplitude modulation (from RL controller) 1.0100 1.0075 e 1.0050 1.0025 E 1.0000 0.9975 5 0.9950 0.9925 0.9900 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 time (ms)

#### **RL on FPGA**



RL start to learn how control the CSR fluctuation

RL stop because the received reward is very low

HELMHOLTZ

MT Annual Meeting 2021

#### **RL hardware implementation results (II)**

Comparison between hardware and Keras implementation



The hardware implementation generates the similar behavior compared to Keras

HELMHOLTZ



### **RL hardware implementation results (III)**

Time performances of the Inference and training phases



| Problem   | CPU     | GPU     | HighFlex2 |      |
|-----------|---------|---------|-----------|------|
| Inference | 200 µs  | 557 µs  | 17 µs     | FPGA |
| Training  | 1800 µs | 6037 µs | 1648 µs   | ARM  |

- The inference deployed in FPGA is extremely fast
- FPGA is the natural interface to detector and actor
- Optimized code on Zynq ARM has acceptable performance for RL during the training HighFlex-2 is an optimized platform for Reinforcement Learning

Karlsruhe Institute of Technology





- Very challenging topic: High-dimensional, nonlinear (collective), fast beam dynamics in femtosecond time scale
- Control of the longitudinal bunch profile for stabilization and automatic start-up
- Could be transferred for real-time optimization of plasma accelerators and their laser systems
- Control-feedback-system and algorithms could be transferred to two similar facilities (ARES and FLUTE)
- Fast ML inference deployed in FPGA
- Design of custom readout cards optimized for AI applications
- Excellent agreement between hardware and software (Keras-RL) implementations
- Deep Deterministic Policy Gradient as demonstrated very low latency of 17 µs, which well satisfied the KARA requirement