HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

Generic tools for a high throughput online processing

Andrey Lebedev on behalf of SDE group* GSI Helmholtzzentrum für Schwerionenforschung GmbH

* Mohammad Al-Turany, Radoslaw Karabowicz, Dennis Klein, Dmytro Kresan, Matthias Kretz, Anar Manafov, Alexey Rybalchenko, Christian Tacke, Florian Uhlig

Introduction

High demands of modern HEP experiments

High throughput requirements for FAIR experiments as well as for the upcoming upgrade of the ALICE experiment.

Motivation

High throughput online processing

- ALICE and FAIR experiments are moving from traditional single to multiprocessing tools for simulation and reconstruction.
- This requires a highly parallelised and data flow driven processing pipelines with a distributed architecture, i.e. a collection of highly maintainable, testable, loosely coupled, independently deployable processes.
- Managing such an environment requires a system, which is able to spawn and control hundreds of thousands of different processes which are tied together by a topology. It can run on computing clusters using different resource management systems (RMS) or even on a laptop and can be controlled by external tools.

Highlights

Generic tools to solve the experiment challenges

- Transport layer
 - FairMQ framework for high throughput distributed data processing
- Deployment and control of distributed workflows
 - DDS The Dynamic Deployment System
 - ODC Online Device Control
- Other projects of our group (not covered in this talk)
 - FairRoot a simulation, reconstruction and analysis framework
 - https://github.com/FairRootGroup/FairRoot
 - VC portable, zero-overhead C++ types for explicitly data-parallel programming
 - <u>https://github.com/VcDevel/Vc</u>
 - FairSoft installation of common software packages
 - https://github.com/FairRootGroup/FairSoft

FairMQ is the core of data transport layer

- A data flow driven computing model by providing building blocks to construct distributed processing pipelines.
- Each processing stage in the pipeline transmits data through message queues via an abstract interface.

EPN workflow from ALICE

David Rohr and Giulio Eulisse

Device and SDK

- FairMQ based processes can be controlled and orchestrated via different systems by implementing the corresponding plugin.
 - **DDS plugin** is provided out of the box.
- FairMQ.SDK provides API to control the state machine of a single device as well as a topology of devices.

Multiple implementations of data transport interface

- FairMQ supports most of the existing data transport technologies:
 - ZeroMQ,
 - Shared memory,
 - RDMA transport based on libfabric.
- A single process can use either single or **multiple different transports** at the same time.
- The transport implementation can be selected **at runtime** per input/output channel.
- Messages can be passed from one channel to another regardless of the transport.

All this helps the user to define the most suitable transport technology for a given task.

Basic concepts

DDS is a tool-set that automates and simplifies the deployment of user-defined processes and their dependencies using a predefined processing graph (topology).

- A single responsibility principle command line tool-set and API;
- users' task is a black box it can be an executable or a script;
- watchdogging;
- rule-based execution of tasks;
- plug-in system to abstract from RMS including SSH and a localhost plug-ins;
- doesn't require pre-installation and pre-configuration on the worker nodes;
- private facilities on demand with isolated sandboxes;
- key-value propagation and custom commands.

10000 feet view

Workflow

- dds-session start
- dds-submit -r ssh -c ssh_hosts.cfg
- dds-topology –activate topology.xml
- dds-topology –update new_topology.xml

Single DDS agent manages multiple user tasks

From user's perspective

ODC – Online Device Control

Deploys and controls a topology of FairMQ devices

ODC uses DDS and FairMQ.SDK as well as gRPC based interface for client

O2 Facility for ALICE@CERN

In the process of commissioning

mCBM@GSI

Various tests planned for this year, preparation in progress

Minimal online approach for 2021 (Volker Friese & Florian Uhlig)

- The developed generic tools provide building blocks for highly parallelised and data flow driven processing pipelines required by the next generation of experiments.
- It allows:
 - to write a message based code without going into details of the transport;
 - to deploy and control topologies on computing and online clusters as well as on a single laptop.
- GitHub projects
 - FairMQ <u>https://github.com/FairRootGroup/FairMQ</u>
 - DDS <u>https://github.com/FairRootGroup/DDS</u>
 - ODC <u>https://github.com/FairRootGroup/ODC</u>