

11:00 – 12:00 Flash talk session 1

Chairman: Sebastian Maier (KIT/LAS)

David Haider

Cryogenic beam current monitor based on sensitive SQUID magnetometry

Matter and Technologies - student retreat

Novel beam instrumentation for short and low charge electron bunches

Transversal and longitudinal phase space characterization

- **ARES:** linear electron accelerator at the SINBAD facility (DESY).
- Dedicated to accelerator R&D studies with sub-fs short electron bunches.
- **PolariX TDS:** Tomographic reconstruction techniques to obtain **full phase space** of the beam.
- **STRIDENAS:** Silicon based **beam profile monitor** for the detection of sub-pC charge electron beams. (S Jaster-Merz et al 2020 J. Phys.: Conf. Ser. 1596 012047)

* D. Marx et al. J. Phys.: Conf. Ser. 874 012077, 2017

0.4

5 Cl

Page 1

POLARIZED PROTON ACCELERATION @ FZJ

For photo-dissociation &

polarization of H atoms,

100 mJ @ 1064 nm, 20 mJ @ 213 nm,

IR/UV Laser

5 Hz, 170 ps

Alignment of

HCI bonds

Photo-dissociation &

polarization transfer to H nuclei ($\Delta t = 350 \text{ ps}$)

Acceleration of the

protons in gas jet

JÜLICH

Forschungszentrum

Setup described in: Markus, Büscher, Anna Hützen et al., High Power Laser Sci. Eng. 8, E36 (2020)

For measurement of nuclear polarization R. Engels et al., Rev.Sci.Instrum. **74**, 4607 (2003)

Anna Hützen | 1 Februar 2021

Nozzle

For HCl gas jet

100 mJ @ 1064 nm

ATHENA

20 mJ @ 213 nm

SIOM

300 J @ 800 nm

Heavy ion beam dynamics for the Helmholtz Linear Accelerator (HELIAC)

- Longitudinal energy reconstruction from a set of phase measurements
- Planning & comissioning of a collimation system

X Design of an *Alternating Phase Focussing* injector

F

SI

Novel Radiation Hard and Fast Scintillator for Beam Diagnostics

Maxim Saifulin (GSI, TU Darmstadt)

The work is done in collaboration with Research Institutes from Russia and Latvia

Goal (Scintillation Detector for Beam Diagnostics):

- Beam intensity measurements at HEBT in GSI
- Heavy ion beams (SIS18): from Carbon to Uranium
- Energies: from 250 MeV/u to 1 GeV/u

Fast PMT signal ²³⁸U@300MeV/u

Advantages of In or Ga doped ZnO ceramics:

- ~100 times longer operation time compared to plastic scintillator
- Radiation damage can be removed by annealing
- Fast scintillation decay time ~0.7 ns
- Scintillation light can be easily red by conventional photomultipliers

Currently used detectors based on plastic scintillator (BC400) require frequent maintenance due to radiation damage

IBIC-2019, P. Boutachkov et. al. https://doi.org/10.18429/JACoW-IBIC2019-MOPP005

EDM Measurements in Storage Rings February 1, 2021 | Maximilian Vitz

Member of the Helmholtz Association

Physics case

• Asymmetry between matter and antimatter \Rightarrow Sakharov: Source of CP-Violation \Rightarrow EDM

EDM:

Measuring method:

- permanent separation of charges
- closely connected to the spin
- predicted by the SM but unmeasurable small

- use a storage ring as a charged particle trap
- inject particles with spin and momentum aligned
- apply radial electric field and measure build-up of vertical polarization

Maximilian Vitz

m.vitz@fz-juelich.de

EDM Measurements in Storage Rings

Spin Coherence Time

• to reach statistical sensitivity \Rightarrow keep spins aligned as long as possible (1000 s)

Coherent particle bunch is needed ⇒ SCT ⇒ time until the total polarization falls below 1/e

Laser cooling of heavy ions at SIS100

S. Klammes, P. Spiller, Th. Walther, and D. Winters

Motivation

- worldwide unique
- possibility to deliver very cold (small relative longitudinal momentum spread Δp/p, small emittance ε) and very short ion bunches to FAIR experiments (e.g. plasma physics)
- key for precision experiments (e.g. laser spectroscopy of electronic structure of heavy ions)
- highly relativistic ion energies of SIS100 allow cooling of many ion species by exploiting the huge Doppler shift (γ up to 13): Z = 10 60
 - higher cooling efficiency with increasing ion beam energy
- only foreseen beam cooling method at SIS100

Goal

 first application of laser cooling at a large synchrotron using novel cw & pulsed laser systems

Reduction of $\Delta p/p$ of a C³⁺ ion beam by detuning the laser wavelength with respect to the bunching frequency performed at the ESR @ GSI

White light laser cooling:

The combination of cw and pulsed laser systems allows simultaneous and fast laser cooling of a broad ion momentum distribution.

Principle of laser cooling of relativistic ion beams

The ion absorbs many directional momenta from the photons and decays each time with a random recoil, which averages out to zero after many scattering events, leaving a net deceleration of the ion. Together with the counteracting force of the rf-buncket, laser cooling can be achieved.

SIS100 laser cooling facility

By meeting the energetic and spatial overlap conditions of the ion and laser beam, XUV fluorescence photons will be emitted from the ions and detected by a novel in vacuo XUV detection system.

© GSI/FAIR/L. Möller

Modulation of Photoinjector Laser with SLM

- Electron bunch characteristics in low-energy section strongly depend on the driving Laser property
- Use Spatial Light Modulator to manipulate the Laser and the generated electron bunch
- Problem: Existing non-linear transformations distort the modulation; Hologram generation not trivial
- Idea: Use ML algorithms
 - Iterative optimization: with camera & SGD
 - NN as surrogate model

Test setup:

Active Learning for Material Recovery

Mario <u>Teixeira Parente</u> (m.parente@fz-juelich.de)

MT-DMA Student Retreat

February 01, 2021

MLZ is a cooperation between

Active Learning with GPR

With Gaussian Process Regression (GPR), you can

- approximate functions while at the same time you
- quantify uncertainty about the approximation itself.

Material discovery

Example: Neutron intensity over 1D reciprocal space and energy.

Thank you for your attention!

More details on GPR can be found in

C. Williams and C. Rasmussen. *Gaussian Processes for Machine Learning*. MIT Press. 2006.

(http://www.gaussianprocess.org/gpml/chapters/RW.pdf).

SIMULATION-AIDED MACHINE LEARNING FOR NANOMETER OPTICS

1. Electron Gun Offset finding & Optimization

3. Grain Orientation Approximation

2. Noise reduction in Angular Streaking

LGADs for Timing Applications in HADES

- Prototype T0 detector based on Low Gain Avalanche Diode (LGAD) technology, tested with a 1.92 GeV proton beam at COSY
- Operated in air without cooling
- Two detectors for simultaneous x- and y-position measurements
- Signals with low Time over Threshold (ToT) arise from capacitive coupling between channels

https://arxiv.org/abs/2005.12965

Diagnostics and abatement of quasiparticle poisoning in superconducting circuits Francesco Valenti, KIT - francesco.valenti@kit.edu

Projects **Reducing radiation:** -Valenti, Cardani et al., arXiv:2005.02286 (subm. to Nat. Comm.) Reducing phonons: -Valenti et al., PRApp 11,054087 (2019). -Valenti, Henriques et al., APL 115,212601 (2019).

information!

Physikalisches Institut

See my talk at the MT retreat for more

Energy Loss Measurement with LIGHT

sub-ns carbon ion bunch for stopping power experiments

XSIS compact RF gun

Reza Bazrafshan, Moein Fakhari, Timm Rohwer, Klaus Flöttman, Franz Kärtner

Introduction

AXSIS RF gun is an S-band compact RF gun with a frequency of 2.998 GHz, which can accelerate pC charge electron bunches up to 150 keV at 100 fs pulse length. A pin-cathode has been used in the cavity in order to increase the electric field on the cathode while using a compact amplifier of 10 kW max. Power. A solenoid just after the gun focusses the electron beam in transverse direction.

Thermal Surface loss due to ohmic losses (left), Tempreture distribution (right)

Using the RF finger to reduce the electric field around the feedthrough

Two coaxial couplers have been connected to the cavity: one coupling antenna, and one probe for reading the electric field. The anode part is fixed, while the cathode part can be moved by a translator. For optimal coupling between the coupler and the cavity, a translator is installed at the end of the

coupler.

Multipacting simulation

Particle Number vs. Time

Trajectory of the electrons in Electric and magnetic field

Electron accumulation due to the electric field and multipacting phenomenon after 10 ns

Vacuum simulation

outgassing rate: 1×10^{-11} torr $\frac{l}{s} \frac{1}{cm^2}$ pumping speed = 250 $^{l}/_{s}$

S parameter (left) and Feeding the cavity (right):

S-Parameters [Magnitude in dB]

)2e+5

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

Design of a booster for THz based accelerators

- Fabrication of compact X-ray sources and lasers is a challenging and promising field of research.
- THz based accelerators are good candidates to achieve such a compact x-ray source in comparison with traditional particle accelerators whose length is measured in kilometers.
- We use a booster after DC or RF gun to accelerate electrons up to 430KeV and a Linac to Higher energies (20MeV).
- We are designing a multi-layer segmented booster to accelerate electrons up to 430 MeV

