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Problem Introduction

For many applications, especially complex systems, the forward process
loses some crucial information making the inverse process ill-posed.
That means the inverse process is uncertain, i.e. multiple variables x
can result in the same measurement y.

Figure: The intrinsic dimension of observation y is typically lower than
independent variables x resulting in an ambigous inverse problem.

DRESDEN 7™\

e L) HZDR




Example: Small-angle X-ray scattering
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- Forward & inverse process

Formation of diffraction data (here: 1D line-out) can be described by
analytic model of forward process (o, pitch, feature size).

Inverse process denotes reconstruction of model parameters based on
experimentally acquired data.
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- Reconstruction of SAXS data using invertible
neural networks

Experiment/Simulation
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Normalizing flow 101

A normalizing flow renders the data y as output of a invertible
function f(z) = y of randomly sampled noise z ~ 7(z).

Change of variables now yields posterior predictictive distribution p(x|y)

provided f and m(z):
6y, z) -t
aer (-2} 1)

General idea: the Jacobian determinent (depending on f) basically
compresses and expands some noise distribution m(z), e.g. z ~ N(0, 1).

p(xly) = (2)
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- Normalizing flow 101 S
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Figure: Mapping from normal distribution 7(Z) to target distribution w(Y') via
unconditioned normalizing flow. Image source: [Kobyzev et al., 2019]
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Solving inverse problems by conditional

normalizing flows.

Let's assume there is a latent space z € RX capturing all information
not contained in y € R™. Hereby, the mapping from z, y to x € RP
becomes bijective and the inverse function exists.

forward (simulation): x — y

a4 |X < (Bayesian) NN | y

inverse (prediction): y — x

Standard (Bayesian) Neural Network

Invertible Neural Network
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Problem Specification (compressed)

By definition of the neural network we have that [y, z] = INN(x;6)
implying: /NN, (x;0) ~ s(x)

The INN therefore jointly approximates the
forward pass s(x) ~ INN(x;0) = [y, z] and
backward pass /INN~1(y,z;0) = x

by incorporating simple neural network into coupling transforms.
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% Bi_directional Training

Loss L = Xy Ly + A\, L; + MLy,
Ly: forward pass
Ly: inverse pass

L,: independence of z, y

Theorem: If an INN f(x) = [y, 2| is trained as proposed, and both the supervised loss
Ly =E[(y—fy(x))?] and the unsupervised loss L, =D (q(y,2),p(y) p(z)) reach zero, sampling
according to Eq. ] with g= f~! returns the true posterior p(x|y*) for any measurement y*.

Note: this loss can be simplified into single Maximum Likelihood term.
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Results

Forward process:

Rekonstruktion aus den wahren Parametern Rekonstruktion aus geschatzten Parametern des INNs
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Summary

m cross-domain surrogate modelling (e.g.Matter, Geophysics,
Medical Imaging, Comp. Psychiatry)

multi-modal data reconstruction

large-scale ML (Horovod)

open-source framework ML4IP for solving inverse problems going
public, soon. (joint effort with Peter Steinbach's Al consultants)
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Taxonomy

Residual flows basically improve memory efficiency of traditional
methods such as UNet, Resnet. (e.g. iRevNet, iUnet). The
determinant is difficult to compute :-(

Infinitetesimal flows model residual flows in terms of
ordinary/stochastic differential equations (e.g. FFJORD).

Coupling transforms characterize flows that have an analytic inverse
but are less flexible (e.g. NICE, RealNVP, GLOW).

Autoregressive flows output y; depends on x; (and sometimes y;) with
J < i. These methods are D times slower to invert than to evaluate
x € RP. The inverse is computed by numerical methods.
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™ Coupling blocks

Let ¢ : x — y be a coupling transform mapping x onto y. A coupling
layer follows four steps:
x € RP is splitted into two parts: [xi, ..., xg — 1] and [x;, ..., xp]
6 = NN([x1,....xqg —1])
yj=xjforj=1---,d—-1
Vi = golx) fori=d,---,D (g is elementwise transform with
parameters 0))

a)

)
S

XA

xB =

I
L= |

|

b)

¥
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- Elementwise transforms

Affine functions:

Piecewise-linear/quadratic polynomials with £ being the relative
position of x within bin b from V}, to V1.

1 1 b—1
go(x) = §€Z(Vb—Vb+1) +EVb+ 5 Y (k= Vis1) (3)
i=0

Cubic splines are evaluated at k knots Vi by computing £ = x — V4.
k = argmin, |x — Vi| denotes the closest knot.

90(€)% = gy + g € + €% + oy, 63 (4)
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- Problem Specification (1)

Definition: parameters x € RP, observations y € RM, iid.
K-dimensional random variable z ~ N(0, /).

Forward process s(x) of parameters x yields measurement y, i.e.
y = s(x).

The likelihood function reads: p(y|x) while the prior distribution is
p(x). We are now looking for the posterior predictive distribution:

p(xly) = p(y[x)p(x) (5)
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Problem Specification (2)

Inverse problem: x = INN~(y, z;8) with z ~ 7(z) = N(0, /)
(6 are parameters of our neural network)

The INN now becomes a tractable model q(x]y) = INN~*(y, z) which
approximates the posterior: p(x|y) ~ q(x|y).

By definition of the neural network we also have that [y, z] = INN(x;0)
implying: NNy (x;0) ~ s(x)
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- Problem Specification (3) o

Finally, the posterior is approximated by conditional transformation of
random variable z:

a(x = INN"*(y,z;0)ly) = p(z)| K|~
OINN~L(y,z;6)

Jx = det( a[y Z] ’y,fz(x))
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- Architecture (1)

input output

Vi =u; ©® eX,D(SQ(UQ)) + tg(UQ)
vo = up ®exp(si(vy)) + t1(vy)

s;j, ti are arbitrary and potentially non-differentaible functions. Here:
neural networks depending on 6.
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- Architecture (2)

... the operations can be easily reversed:

input output

uy = (v2 — t1(v1)) © exp(—si(v1))
up = (vi — t2(u2)) © exp(—s2(u2))
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- Architecture (3)

Short recap::
m input vector u is split into two non-overlapping partitions uy, u>.

m s, t can be any arbitrarily complicated functions and need not be
invertible.

m shuffle the elements of the subsequent layer's input in a randomized
way to enhance interaction among the individual variables.

m Pad both the in- and output of the network with an equal number
of zeros, if input dimension is small.
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% Bi_directional Training

Ly: forward pass
Ly inverse pass

L, independence of z,y

Theorem: If an INN f(x) = [y,z] is trained as proposed, and both the supervised loss
Ly =E[(y—fy(x))? and the unsupervised loss L, =D (q(y,z),p(y) p(z)) reach zero, sampling
according to Eq.[] with g= f~! returns the true posterior p(x|y*) for any measurement y*.
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Bi-directional Training: Forward pass
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Loss terms involved in forward process:
m L,(q(y, z), p(y)p(z)) (blue arrow)
Normality of z and independence of y and z are enforced.
m Ly(y, fy(x)) (red arrow)
Supervised loss for evaluation of our surrogate model
INN(x) = [9,2] vs [y] (e.g. L2 norm)
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- Bi-directional Training: Inverse pass

Ly characterizes backward process and
mainly speeds up convergence:

m reconstruction quality (red arrow),
Minimize |[INN71(y, z) — x||3

m MMD (blue arrow)
Similarity of data prior p(x) and
marginalized posterior of our INN

q(x) = J, alxly)
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- Comparing probability distributions

We would like to answer whether two probability distributions p and ¢
are equal. We could compute a Z-statistics in case of Gaussians:

7= ke (6)
\/03/n+02/n

Suppose the distribution is non-Gaussian: Wilcoxon signed rank test,
Kolmogorov Smirnov test, ...

Maximum mean discrepancy (MMD)[?] is another test for comparing
potentially non-Gaussian distributions. It can be seen as a kernel
two-sample test.
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— Maximum Mean Discrepancy

Main assumption of MMD:
Ex~p(f (X)) = Eynq(f(y)) if and only if p = q

for any well-behaved function (bounded) function f € F(X) on some
space X.

MMD quantifies that difference of expectations by maximizing wrt. f
as of

MMD(p, q) = sup [Exwp(f(X)) = Eyng(f(y))]
feF(Xx)
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Example

Let's try certain naive feature mappings f(x) = (f, p(x)).
©(x) = x allows us to focus on the first moment, i.e.

MMD(p, q) o |[|Ex~p(@(x)) — Eynq(@(¥))] |
= ||EXNP( ) y~q( )||
= ||up — Kql |

Let's add the 2nd moment: ¢(x) = (x, x?):

MMD(p, q) o< ||Ex~p(@(X)) = Eyng(o(y))] |
= “[EXNP(X)vEXNp(Xz)] [Eynq(¥), Eynqly )]“

=\ (Eeup(%) = Eyng())? + (Exup(32) — Eynq(y2))?
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Kernel trick

We can compare more complex moments by restricting F(X') as unit
ball in a reproducing kernel Hilbert space and defining a feature
mapping k(x,y) = (p(x),©(y)). MMD?(p, q) now becomes:

MMD2(p.0) = max [Expl(F0)) = EymaF V)]

o ||kp — tigll?
= Exx (0(x), 0(xX')) + Eyy (0(v), 0(v')) = 2Exy (p(x). ¢
= Exok(x,x")+ Ey yk(y,y'") —2Exyk(x,y)

meaning that MMD quantifies inter-distribution similarity
k(x,x"), k(y,y") as well as cross-distribution similarity k(x, y).
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Kernel trick
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Figure: Our distributions p (red) and g (blue) are interpolated in terms of a
certain kernel (here: Gaussian) at any x; ~ p, y; ~ q.
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- Witness function

MMD is basically comparing p and g by witness function w(p, q), i.e.

MMD?(p, q) = |lup — kgl I> = [lw(p, q)||?

witness function
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MMD loss of invertible networks

p(x) Reproducing Kernel Hilbert Space

— @ RKHS embedding of Q
) @ RKHS embedding of P

MMD is easier to use, more stable and cheaper to compute than loss
terms based on discriminator of GANs (Tolstikinhin et al., 2017).

Inverse multiquadratics kernel found by optimization:
k(x,x)=1/(1+ H(x—x/)/th), where h defines the width of the
kernel.
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