
Analyzing Inverse Problems with Invertible Neural
Networks

Nico Hoffmann

15th December 2020

Nico Hoffmann | Institute of Radiation Physics | http://www.hzdr.de

Member of the Helmholtz Association



YIG: AI for Future Photon Science

Nico Hoffmann | Institute of Radiation Physics | http://www.hzdr.de

Member of the Helmholtz AssociationPage 1/34



That’s us!

Nico Hoffmann | Institute of Radiation Physics | http://www.hzdr.de

Member of the Helmholtz AssociationPage 2/34





Problem Introduction

For many applications, especially complex systems, the forward process
loses some crucial information making the inverse process ill-posed.
That means the inverse process is uncertain, i.e. multiple variables x
can result in the same measurement y .

Figure: The intrinsic dimension of observation y is typically lower than
independent variables x resulting in an ambigous inverse problem.
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Example: Small-angle X-ray scattering
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Phase Problem
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Forward & inverse process

Formation of diffraction data (here: 1D line-out) can be described by
analytic model of forward process (�, pitch, feature size).
Inverse process denotes reconstruction of model parameters based on
experimentally acquired data.
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Reconstruction of SAXS data using invertible
neural networks

Nico Hoffmann | Institute of Radiation Physics | http://www.hzdr.de

Member of the Helmholtz AssociationPage 7/34



Normalizing flow 101

A normalizing flow renders the data y as output of a invertible
function f (z) = y of randomly sampled noise z ⇠ ⇡(z).

Change of variables now yields posterior predictictive distribution p(x |y )
provided f and ⇡(z):

p(x |y ) = ⇡(z)
����det

✓
�f �1(y , z)
�[y , z ]

◆����
�1

(1)

General idea: the Jacobian determinent (depending on f ) basically
compresses and expands some noise distribution ⇡(z), e.g. z ⇠ N(0, 1).

Nico Hoffmann | Institute of Radiation Physics | http://www.hzdr.de

Member of the Helmholtz AssociationPage 8/34



Normalizing flow 101

Figure: Mapping from normal distribution ⇡(Z) to target distribution ⇡(Y ) via
unconditioned normalizing flow. Image source: [Kobyzev et al., 2019]
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Solving inverse problems by conditional
normalizing flows.

Let’s assume there is a latent space z 2 RK capturing all information
not contained in y 2 RM . Hereby, the mapping from z , y to x 2 RD

becomes bijective and the inverse function exists.
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Problem Specification (compressed)

By definition of the neural network we have that [y, z] = INN(x; ✓)
implying: INNy (x; ✓) ⇡ s(x)

The INN therefore jointly approximates the

forward pass s(x) ⇡ INN(x; ✓) = [y , z ] and

backward pass INN�1(y, z; ✓) = x

by incorporating simple neural network into coupling transforms.
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Bi-directional Training

Loss L = �yLy + �zLz + �xLx.

Ly: forward pass

Lx: inverse pass

Lz: independence of z , y

Note: this loss can be simplified into single Maximum Likelihood term.
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Results
Forward process:

Inverse problem (reconstruction):
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Summary

cross-domain surrogate modelling (e.g.Matter, Geophysics,
Medical Imaging, Comp. Psychiatry)
multi-modal data reconstruction
large-scale ML (Horovod)
open-source framework ML4IP for solving inverse problems going
public, soon. (joint effort with Peter Steinbach’s AI consultants)
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Thank you!
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Taxonomy

Residual flows basically improve memory efficiency of traditional
methods such as UNet, Resnet. (e.g. iRevNet, iUnet). The
determinant is difficult to compute :-(

Infinitetesimal flows model residual flows in terms of
ordinary/stochastic differential equations (e.g. FFJORD).

Coupling transforms characterize flows that have an analytic inverse
but are less flexible (e.g. NICE, RealNVP, GLOW).

Autoregressive flows output yi depends on xj (and sometimes yj) with
j  i . These methods are D times slower to invert than to evaluate
x 2 RD. The inverse is computed by numerical methods.
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Coupling blocks
Let � : x ! y be a coupling transform mapping x onto y . A coupling
layer follows four steps:

1 x 2 RD is splitted into two parts: [x1, ..., xd � 1] and [xd , ..., xD]
2 ✓ = NN([x1, ..., xd � 1])
3 yj = xj for j = 1, · · · , d � 1
4 yi = gQ(xi ) for i = d , · · · ,D (g is elementwise transform with

parameters ✓))

Figure: Sketch of certain coupling architectures (image source: Kobyzev et al.,
2019).
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Elementwise transforms

Affine functions:

g✓ i (xi ) = ↵ixi + �i with ✓i = ↵i ,�i (2)

Piecewise-linear/quadratic polynomials with ⇠ being the relative
position of x within bin b from Vb to Vb+1.

g✓(x) =
1

2
⇠2(Vb � Vb+1) + ⇠Vb +

1

2

b�1

Â
i=0

(Vk � Vk+1) (3)

Cubic splines are evaluated at k knots Vk by computing ⇠ = x � Vk .
k = argmink |x � Vk | denotes the closest knot.

g✓(⇠)
k = ↵k0 + ↵k1⇠+ ↵k2⇠

2 + ↵k3⇠
3 (4)
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Problem Specification (1)

Definition: parameters x 2 RD, observations y 2 RM , iid.
K-dimensional random variable z ⇠ N(0, IK).

Forward process s(x) of parameters x yields measurement y , i.e.
y = s(x).

The likelihood function reads: p(y|x) while the prior distribution is
p(x). We are now looking for the posterior predictive distribution:

p(x|y) ⇡ p(y|x)p(x) (5)
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Problem Specification (2)

Inverse problem: x = INN�1(y, z; ✓) with z ⇠ ⇡(z) = N (0, IK)
(✓ are parameters of our neural network)

The INN now becomes a tractable model q(x|y) = INN�1(y, z) which
approximates the posterior: p(x|y) ⇡ q(x|y).

By definition of the neural network we also have that [y, z] = INN(x; ✓)
implying: INNy (x; ✓) ⇡ s(x)
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Problem Specification (3)

Finally, the posterior is approximated by conditional transformation of
random variable z :

q(x = INN�1(y, z; ✓)|y) = p(z)|Jx|�1

Jx = det(
@INN�1(y, z; ✓)

@[y, z]
|y,fz(x))
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Architecture (1)

v1 = u1 � exp(s2(u2)) + t2(u2)
v2 = u2 � exp(s1(v1)) + t1(v1)

si , ti are arbitrary and potentially non-differentaible functions. Here:
neural networks depending on ✓.
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Architecture (2)

... the operations can be easily reversed:

u2 = (v2 � t1(v1))� exp(�s1(v1))
u1 = (v1 � t2(u2))� exp(�s2(u2))
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Architecture (3)

Short recap::
input vector u is split into two non-overlapping partitions u1, u2.
s, t can be any arbitrarily complicated functions and need not be
invertible.
shuffle the elements of the subsequent layer’s input in a randomized
way to enhance interaction among the individual variables.
Pad both the in- and output of the network with an equal number
of zeros, if input dimension is small.
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Bi-directional Training

Loss L = �yLy + �zLz + �xLx.

Ly: forward pass

Lx: inverse pass

Lz: independence of z , y
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Bi-directional Training: Forward pass

Loss terms involved in forward process:
Lz(q(y, z), p(y)p(z)) (blue arrow)
Normality of z and independence of y and z are enforced.
Ly(y, fy(x)) (red arrow)
Supervised loss for evaluation of our surrogate model
INN(x) = [ŷ , ẑ ] vs [y ] (e.g. L2 norm)
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Bi-directional Training: Inverse pass

Lx characterizes backward process and
mainly speeds up convergence:

reconstruction quality (red arrow),
Minimize ||INN�1(y , z)� x ||22
MMD (blue arrow)
Similarity of data prior p(x) and
marginalized posterior of our INN
q(x) =

R
y q(x |y )
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Comparing probability distributions

We would like to answer whether two probability distributions p and q
are equal. We could compute a Z-statistics in case of Gaussians:

Z =
µp � µqq
�2p/n+ �2q/n

(6)

Suppose the distribution is non-Gaussian: Wilcoxon signed rank test,
Kolmogorov Smirnov test, ...

Maximum mean discrepancy (MMD)[?] is another test for comparing
potentially non-Gaussian distributions. It can be seen as a kernel
two-sample test.
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Maximum Mean Discrepancy

Main assumption of MMD:

Ex⇠p(f (x)) = Ey⇠q(f (y )) if and only if p = q

for any well-behaved function (bounded) function f 2 F(X ) on some
space X .

MMD quantifies that difference of expectations by maximizing wrt. f
as of

MMD(p, q) = sup
f 2F(X )

[Ex⇠p(f (x))�Ey⇠q(f (y ))]
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Example

Let’s try certain naive feature mappings f (x) = hf ,'(x)i.
'(x) = x allows us to focus on the first moment, i.e.

MMD(p, q) / ||Ex⇠p('(x))�Ey⇠q('(y ))| |
= ||Ex⇠p(x)�Ey⇠q(y )| |
= ||µp � µq| |

Let’s add the 2nd moment: '(x) = (x , x2):

MMD(p, q) / ||Ex⇠p('(x))�Ey⇠q('(y ))| |
=

��|[Ex⇠p(x),Ex⇠p(x2)]� [Ey⇠q(y ),Ey⇠q(y
2)]

�� |

=
q
(Ex⇠p(x)�Ey⇠q(y ))2 + (Ex⇠p(x2)�Ey⇠q(y2))2
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Kernel trick

We can compare more complex moments by restricting F(X ) as unit
ball in a reproducing kernel Hilbert space and defining a feature
mapping k(x , y ) = h'(x),'(y )i. MMD2(p, q) now becomes:

MMD2(p, q) = max
f :||f ||1

[Ex⇠p(f (x))�Ey⇠q(f (y ))]2

= ...

/ ||µp � µq||2

= ...

= Ex ,x 0
⌦
'(x),'(x 0)

↵
+ Ey ,y 0

⌦
'(y ),'(y 0)

↵
� 2Ex ,y h'(x),'(y )i

= Ex ,x 0k(x , x
0) + Ey ,y 0k(y , y

0)� 2Ex ,yk(x , y )

meaning that MMD quantifies inter-distribution similarity
k(x , x 0), k(y , y 0) as well as cross-distribution similarity k(x , y ).
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Kernel trick

Figure: Our distributions p (red) and q (blue) are interpolated in terms of a
certain kernel (here: Gaussian) at any xi ⇠ p, yi ⇠ q.
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Witness function

MMD is basically comparing p and q by witness function w (p, q), i.e.

MMD2(p, q) = ||µp � µq| |2 = ||w (p, q)| |2
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MMD loss of invertible networks

MMD is easier to use, more stable and cheaper to compute than loss
terms based on discriminator of GANs (Tolstikinhin et al., 2017).

Inverse multiquadratics kernel found by optimization:
k(x, x0) = 1/(1+

��(x� x0)/h
��2
2
), where h defines the width of the

kernel.
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