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01 ML for High-Level Control in PETRAIV

02 Theory of the developed model

• From Taylor maps for ODEs to deep neural networks (TM-PNN)

• Regularization when learning dynamics with small datasets

03 Experiments on PETRAIII

• Orbit correction

• Tune recovering

• Optics measurement (data analysis in progress)

04 Other applications

• RL for transmission problem

• UCI datasets (beyond accelerators)

04 Next steps

• Optimizations of the TM-PNN

• Optics measurement data processing

• Agent-based architecture for experiments and operation



01    ML for High-Level Control in PETRAIV
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Upgrading to 4th generation light sources
(PETRA IV) needs advanced High-Level 
Control for operation 

• The resolution gap between 1-10 nanometers

• Reliability demands grow (95% -> 99%)

• Machines are more sensitive with larger number 

of components

• High nonlinearities

While PETRAIII is stable in operation and don’t require ML, the 4th generation rings (PETRAIV) 

faces certain difficulties:

ML
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Big Data is all about finding correlations

▪ well-posed problem

▪ high performance computing

▪ ubiquitous data

Physics-based Deep Neural Networks | Andrei Ivanov

The model will be only as good or as bad as the data you have

In the real-world, application of ML is more difficult than in research:

• learning on the real system from limited samples

• high-dimensional continuous state and action spaces. 

• safety constraints that should never or at least rarely be violated

• tasks that may be partially observable, alternatively viewed as non-stationary or stochastic

• system operators who desire explainable policies and actions

• inference that must happen in real-time at the control frequency of the system

https://xkcd.com/1838/



02 Theory of the developed model

▪ From Taylor maps for ODEs to deep neural 

networks

▪ Regularization when learning dynamics with 

small datasets
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Novel approach for constructing deep neural networks 
for beam dynamics

Physics-based Deep Neural Networks | Andrei Ivanov

with the following key features:

▪ accurate simulation of dynamics without training

▪ model fine-tuning with limited measurements
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The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping 

technique can be used to initialize the weights of a polynomial neural network

Physics-based Deep Neural Networks | Andrei Ivanov

with the following key features:

▪ accurate simulation of dynamics without training

▪ model fine-tuning with limited measurements

Pendulum oscillation: ሷφ = −ω2 sinφ

Novel approach for constructing deep neural networks 
for beam dynamics

φ
ሶφ 𝑊1 =

1 0.099 −7.64E−06 0
0 1.000 −1.54E−04 0

𝑊2 =
0 0 0 0 0 0 −1.58E−05 0 6.11E−10 0
0 0 0 0 0 0 −4.80E−04 0 2.47E−08 0

𝑊3 =
0 0 0 0 0 0 0 0 0 0 0 2.46E−05 0 −2.28E−09 0 7.61E−10 5.87E−14 0 −1.95E−14 0

0 0 0 0 0 0 0 0 0 0 0 9.95E−04 0 −1.15E−07 0 3.84E−08 3.56E−12 0 −1.18E−12 0
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Novel approach for constructing deep neural networks 
for beam dynamics
fine-tuning of the NN with one or a few training samples

ideal pendulum
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Novel approach for constructing deep neural networks 
for beam dynamics
fine-tuning of the NN with one or a few training samples

ideal pendulum

+

one measurement of dumped oscillations
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Translating lattices of the storage rings into deep NN

Physics-based Deep Neural Networks | Andrei Ivanov

FODO: neural network with 12 layers represents resonance

Initialized NN accurately represents the parametric dependency of dynamics on 

magnet strength, such as the appearance of a third-integer resonance
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Translating lattices of the storage rings into deep NN

Physics-based Deep Neural Networks | Andrei Ivanov

FODO: neural network with 12 layers represents resonance

Initialized NN accurately represents the parametric dependency of dynamics on 

magnet strength, such as the appearance of a third-integer resonance

PETRAIII: deep neural network with 1519 layers represents ideal lattice with fair accuracy

▪ 2,3 km length with 1519 magnets        ▪ 210 horizontal and 194 vertical correctors        ▪ 246 BMPS
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Robustness to noise and physical consistency
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Loss function for data-driven training contains a regularization term and avoid overfitting

depends on training data and 

weights

depends only on 

weights

Regularization aims to reduce the number of free parameters (weights) of the NN to ovoid overfitting. The

traditional methods (L1-L2 norms) do not reflect physics and just try to reduce the absolute magnitude of the

weights during training.

𝑊1 =
1 0.099 −7.64E−06 0

0 1.000 −1.54E−04 0
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To handle problem of limited observations we implemented 
special regularization methods
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Symplectic regularization

QUBO-based regularization (quadratic unconstrained binary optimization)

For Hamiltonian systems representing single-particle beam dynamics, the symplectic property can be used. The 

Hamiltonian structure of each layer is preserved for all new inputs which has a large impact on generalization.

𝑊1 =
𝑤1

11 𝑤1
12

𝑤1
21 𝑤1

22 ,   𝑊2 =
𝑤2

11 𝑤2
12 𝑤2

13

𝑤2
21 𝑤2

22 𝑤2
23

𝑊2 =
0 0 0 0 0 0 −1.58E−05 0 6.11E−10 0
0 0 0 0 0 0 −4.80E−04 0 2.47E−08 0

Since physical systems that are described by ODEs often lead to sparse weights, this should be preserved during training:

symplectic property 

QUBO problem
Problem: fit weights with data and maximize 

number of zero elements

Solution: combinatorial problem that can be solved

with Quantum Annealers



02 Experiments on PETRAIII

▪ Orbit correction

▪ Tune recovering

▪ Optics measurement (data analysis in progress)
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One-shot learning of PETRAIII in experiments

Physics-based Deep Neural Networks | Andrei Ivanov

Beam threading

1. All corrector magnets are switched off

2. Beam is able to travel through only a part of the ring

3. Neural Network predicts an optimal control policy for beam propagation

1st iteration

3rd iteration

no beam

no beamcorrected beam
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One-shot learning of PETRAIII in experiments

Physics-based Deep Neural Networks | Andrei Ivanov

Beam threading

Tune recovering

1. All corrector magnets are switched off

2. Beam is able to travel through only a part of the ring

3. Neural Network predicts an optimal control policy for beam propagation

1st iteration

3rd iteration

95% accuracy of the 

multi-turn prediction

beam oscillation in ideal lattice

beam oscillation in imperfect lattice

training NN with 

a single-turn 

measurements

no beam

no beamcorrected beam

1. Tune is the main multi-turn frequency of beam oscillation in the storage ring 

2. The affected magnets cause the tune change from the designed values.

3. Neural Network is trained with only a single-turn measurement and estimates tunes with 95% accuracy.
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Optics measurement 

Physics-based Deep Neural Networks | Andrei Ivanov

Elegant NN in TensorFlow
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Optics measurement on PETRA III

Physics-based Deep Neural Networks | Andrei Ivanov

LOCO as a benchmark

Linear response matrix 

measurement for closed optics

Fine-tuning of the proposed NN architecture

Measurements on December 9, 2020 are not analyzed yet.



04 Other applications

▪ RL for transmission problem

▪ UCI datasets (beyond accelerators)
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Problem formulation

Physics-based Deep Neural Networks | Andrei Ivanov

beam transmission: 2 actuators (correctors), 1 objective, sextupoles and apertures

nonlinear response 

concerning the random 

misalignments of magnets

corrector 1 corrector 1
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Numerical optimization

Physics-based Deep Neural Networks | Andrei Ivanov

using traditional optimizers one can iteratively find out optimal corrector’s values
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Numerical optimization

Physics-based Deep Neural Networks | Andrei Ivanov

using traditional optimizers one can iteratively find out optimal corrector’s values
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RL for control

Physics-based Deep Neural Networks | Andrei Ivanov

NN is trained with historical data and learns an optimal policy

Traditional RL agents

correctors

Observations (transmission rate and correctors)

random misalignments
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RL for control

Physics-based Deep Neural Networks | Andrei Ivanov

It is hard to achieve meaningful results with black-box models

During each epoch NN is trained with simulated data for the given random misalignments and tries to 

maximize initial state (orange line). After max. 40 iterations the procedure begins again for new random 

misalignments.
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RL for control enhanced by physics-based NN

Physics-based Deep Neural Networks | Andrei Ivanov

Incorporate a priory knowledge in form of a trainable NN

correctors

observations

ideal lattice

misalign

ments

RL agents

with traditional NN

real lattice with random  

misalignments
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RL agent recovers misalignments distribution from data and 
provides an optimal strategy

Physics-based Deep Neural Networks | Andrei Ivanov

Similar to a traditional optimizer that utilizes knowledge from historical data and uses adaptive 

steps during objective maximization
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UCI benchmarks

Physics-based Deep Neural Networks | Andrei Ivanov

If dataset generated by a physical system then developed model can be applied for a general-

purpose regression problem without a prior knowledge about ODEs

x1

x2

x1

x2

x1

x2

Interpolation Extrapolation

Prediction for data from the 

middle of training data
Prediction outside of the 

range of training data

True response

• Airfoil Self-Noise Data Set: NASA data set, obtained from a series of aerodynamic and acoustic tests of two 

and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.

• Yacht Hydrodynamics Data Set: Delft data set, used to predict the hydrodynamic performance of sailing yachts 

from dimensions and velocity.
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UCI benchmarks
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If dataset generated by a physical system then developed model can be applied for a general-

purpose regression problem without a prior knowledge about ODEs

• Airfoil Self-Noise Data Set: NASA data set, obtained from a series of aerodynamic and acoustic tests of two 

and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.

• Yacht Hydrodynamics Data Set: Delft data set, used to predict the hydrodynamic performance of sailing yachts 

from dimensions and velocity.

Interpolation Extrapolation

MSE MAE R2 MSE MAE R2

Linear Regression 0.16 0.12 0.25 0.47 0.48 <0

Polynomial Regr. 0.08 0.05 0.82 0.34 0.33 <0

SVR 0.09 0.07 0.80 0.28 0.28 <0

XGB 0.02 0.01 0.99 0.27 0.28 <0

DNN 0.01 0.01 0.99 0.11 0.10 <0

TM-PNN 0.01 0.01 0.99 0.02 0.02 0.84

Performance of models on test sets for Yacht data:



04 Next steps

▪ Optimizations of the TM-PNN

▪ Optics measurement data processing

▪ Agent-based architecture for experiments 

and operation
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Results

01 Optimizations of the TM-PNN

02 Optics measurement data processing

03 Agent-based architecture for experiments and operation

Physics-based Deep Neural Networks | Andrei Ivanov

Next steps

European Conference 

on Artificial Intelligence Physical Review AB
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