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Overview
01 ML for High-Level Control in PETRAIV

02 Theory of the developed model

« From Taylor maps for ODEs to deep neural networks (TM-PNN)
« Regularization when learning dynamics with small datasets

03 Experiments on PETRAIII

* Orbit correction
* Tune recovering
» Optics measurement (data analysis in progress)

04 Other applications

* RL for transmission problem
» UCI datasets (beyond accelerators)

04 Next steps

* Optimizations of the TM-PNN
» Optics measurement data processing
» Agent-based architecture for experiments and operation
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01 ML for High-Level Control in PETRAIV
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« The resolution gap between 1-10 nanometers . :'.-'.
* Reliability demands grow (95% -> 99%))

« Machines are more sensitive with larger number
of components
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* High nonlinearities
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Big Data is all about finding correlations

well-posed problem
high performance computing

ubiquitous data

In the real-world, application of ML is more difficult than in research:

« learning on the real system from limited samples
* high-dimensional continuous state and action spaces.
« safety constraints that should never or at least rarely be violated

« tasks that may be partially observable, alternatively viewed as non-stationary or stochastic

» system operators who desire explainable policies and actions

THIS 15 YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE CTHER SIDE.

WHAT IF THE ANSLEERS ARE LJRONG? )

JUST STIR THE PILE DNTIL
THEY START LOOKING RIGHT.
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https://xkcd.com/1838/

 inference that must happen in real-time at the control frequency of the system
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02

Theory of the developed model

= From Taylor maps for ODEs to deep neural
networks

= Regularization when learning dynamics with
small datasets



Novel approach for constructing deep neural networks
for beam dynamics

with the following key features:
= accurate simulation of dynamics without training

= model fine-tuning with limited measurements
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Novel approach for constructing deep neural networks
for beam dynamics

with the following key features:

= accurate simulation of dynamics without training

« model fine-tuning with limited measurements

The key idea: If the dynamics of a system approximately follows a given differential equation, the Taylor mapping
technique can be used to initialize the weights of a polynomial neural network
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Novel approach for constructing deep neural networks
for beam dynamics

fine-tuning of the NN with one or a few training samples
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Novel approach for constructing deep neural networks
for beam dynamics

fine-tuning of the NN with one or a few training samples
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Translating lattices of the storage rings into deep NN

FODO: neural network with 12 layers represents resonance

qf d b d gd sd qd d b d qof sf

Initialized NN accurately represents the parametric dependency of dynamics on
magnet strength, such as the appearance of a third-integer resonance
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Translating lattices of the storage rings into deep NN

FODO: neural network with 12 layers represents resonance

qf d b

d qd sd qd d b d qf sf

2

Length, m

k | |
" quadrupole - drift 7

Initialized NN accurately represents the parametric dependency of dynamics on
magnet strength, such as the appearance of a third-integer resonance

PETRAIIIl: deep neural network with 1519 layers represents ideal lattice with fair accuracy

= 2,3 km length with 1519 magnets
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= 210 horizontal and 194 vertical correctors

= 246 BMPS

—— CPU: Intel Core i15-8500T

TensorFlow CPU: Xeon(R) 6140 90GB
—— TensorFlow GPU: Tesla P100 16GB

o
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Robustness to noise and physical consistency

246 1519
Loss = Y |IX(0)M™™ — X(0)F™|[+ A > S(W{, wy),

i=0 §=0

N\ —~ / NG —~ J
depends on training data and depends only on
weights weights

Regularization aims to reduce the number of free parameters (weights) of the NN to ovoid overfitting. The
traditional methods (L1-L2 norms) do not reflect physics and just try to reduce the absolute magnitude of the
weights during training.
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To handle problem of limited observations we implemented
special regularization methods

Symplectic regularization

For Hamiltonian systems representing single-particle beam dynamics, the symplectic property can be used. The
Hamiltonian structure of each layer is preserved for all new inputs which has a large impact on generalization.
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QUBO-based regularization (quadratic unconstrained binary optimization)

Since physical systems that are described by ODEs often lead to sparse weights, this should be preserved during training:

Problem: fit weights with data and maximize

w, = (|00 0000|-1-58E-030B.1E-1G 0y QUBO problem number of zero elements
2~ 1000000/-4.80E-04 0 2.47E-08

Solution: combinatorial problem that can be solved
with Quantum Annealers
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02 Experiments on PETRAIII

= QOrbit correction
= Tunerecovering

= Optics measurement (data analysis in progress)



One-shot learning of PETRAIII In experiments

Beam threading - 1st iteration
N onn| .rl noneam o ;
1. All corrector magnets are switched off < o) ""'J J\V/ I|' oot R
2. Beamis able to travel through only a part of the ring ~0.02 1
3. Neural Network predicts an optimal control policy for beam propagation 3rd iteration
"% corrected beam ] no beam
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One-shot learning of PETRAIII In experiments

Beam threading

1. All corrector magnets are switched off

2. Beam is able to travel through only a part of the ring

= [rm)

3. Neural Network predicts an optimal control policy for beam propagation

Tune recovering

 (m)

1. Tune is the main multi-turn frequency of beam oscillation in the storage ring
2. The affected magnets cause the tune change from the designed values.
3. Neural Network is trained with only a single-turn measurement and estimates tunes with 95% accuracy.
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—— beam oscillation in ideal lattice

—— beam oscillation in imperfect lattice
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Optics measurement
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Optics measurement on PETRA Il
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Fine-tuning of the proposed NN architecture

Measurements on December 9, 2020 are not analyzed yet.
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04 Other applications

= RL for transmission problem

= UCI datasets (beyond accelerators)



Problem formulation

| I BN cor N sext E quad

1 | 0 II I

nonlinear response
concerning the random
misalignments of magnets

corrector 2

corrector 1 corrector 1
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Numerical optimization
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Numerical optimization
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RL for control

random misalignments

Traditional RL agents l
- correctors BN cor WEm sext EEE quad
f",:?(-:lk -, > | I .| | l I
N o N I
e 0 ) — g 3 p p x

O

Observations (transmission rate and correctors)

DESY. Physics-based Deep Neural Networks | Andrei Ivanov Page 24



RL for control

It is hard to achieve meaningful results with black-box models
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During each epoch NN is trained with simulated data for the given random misalignments and tries to

maximize initial state (orange line). After max. 40 iterations the procedure begins again for new random
misalignments.
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RL for control enhanced by physics-based NN

real lattice with random
misalignments

ideal lattice

B cor N sext E quad | I | ] | | ] |
|
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RL agent recovers misalignments distribution from data and
provides an optimal strategy

Similar to a traditional optimizer that utilizes knowledge from historical data and uses adaptive
steps during objective maximization
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UCI benchmarks

If dataset generated by a physical system then developed model can be applied for a general-
purpose regression problem without a prior knowledge about ODEs

« Airfoil Self-Noise Data Set: NASA data set, obtained from a series of aerodynamic and acoustic tests of two
and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.

« Yacht Hydrodynamics Data Set: Delft data set, used to predict the hydrodynamic performance of sailing yachts
from dimensions and velocity.

True response Interpolation Extrapolation
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UCI benchmarks

If dataset generated by a physical system then developed model can be applied for a general-
purpose regression problem without a prior knowledge about ODEs

Airfoil Self-Noise Data Set: NASA data set, obtained from a series of aerodynamic and acoustic tests of two
and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel.

Yacht Hydrodynamics Data Set: Delft data set, used to predict the hydrodynamic performance of sailing yachts
from dimensions and velocity.

Performance of models on test sets for Yacht data:

_ Interpolation Extrapolation

MSE MAE R2 MSE MAE R2
Linear Regression 0.16 0.12 0.25 0.47 0.48 <0
Polynomial Regr. 0.08 0.05 0.82 0.34 0.33 <0
SVR 0.09 0.07 0.80 0.28 0.28 <0
XGB 0.02 0.01 0.99 0.27 0.28 <0
DNN 0.01 0.01 0.99 0.11 0.10 <0
TM-PNN 0.01 0.01 0.99 0.02 0.02 0.84
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04 Next steps

= Optimizations of the TM-PNN
= Optics measurement data processing

= Agent-based architecture for experiments
and operation



Results

ECAl oz Qps
European Conference physics
on Artificial Intelligence Physical Review AB

Next steps

01 Optimizations of the TM-PNN
02 Optics measurement data processing

03 Agent-based architecture for experiments and operation
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Thank you

Contact
DESY. Deutsches Andrei lvanov
Elektronen-Synchrotron andrei.ivanov@desy.de

www.desy.de



