High Fidelity Simulation of High Granularity Calorimeters with High Speed

AMALEA Annual Meeting

Erik Buhmann, Sascha Diefenbacher, <u>Engin Eren</u>, Frank Gaede, Gregor Kasieczka, Anatolii Korol, Katja Krüger

17.12.2020

arxiv:2005.05334

Calorimeters in a HEP Experiment

- Incoming particle initiates the showers and secondary particles are produced
- These secondary particles further produce other particles until the full energy is absorbed

One type of EM calorimeter: sampling calorimeter

- Alternating layers of passive absorbers and active detectors
- Only **fraction** of particle energy is recorded (visible energy)

High Granularity Calorimeter

Very fine segmentation of channels

- Reconstruct all individual particle showers
- Optimised for Particle Flow Approach (PFA)
 - ✓ Improve overall precision

Examples:

- ILD detector at ILC (Higgs Factory):
 - * Si-W ECAL (5x5mm) + Scintillator-Steel HCAL (30x30mm)
- CMS High Granularity Calorimeter (HGCAL)

Shower Simulation

• Particle showers in the calorimeter are simulated by Geant4

✓ First-principle **physics** based simulation

• Very CPU intensive, due to large number of interacting particles

Goal:

- Reproduce accurate shower simulations with a faster, powerful generator; based on state-of-the-art generative models
- Enormous amounts of CPU time could be potentially saved!

Figure from D.Costanzo, J.Catmore, LHCC meeting

CALOGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks

Michela Paganini, Luke de Oliveira, and Benjamin Nachman Phys. Rev. D **97**, 014021 – Published 30 January 2018

Simulator	Hardware	Batch size	ms/shower	
Geant4	CPU	N/A	1772	
		1	13.1	
	CPU	10	5.11	
		128	2.19	
		1024	2.03	
CALOGAN		1	14.5	
		4	3.68	
	GPU	128	0.021	
		512	0.014	
		1024	0.012 🗸	

Training Data

Geant4 Simulation

- Shooting photon perpendicular to the ILD-ECAL (Si-W)
 - Constant incident point
 - 950k photon showers
 - Photon energy: 10-100 GeV, continuous!
 - 30x30x30 pixels, centered on beam

Generative Models GAN and WGAN

Generative Adversarial Network (GAN)

- Generator generates new fake images from noise
- Discriminator tries to differentiate: Fake or Real ?
 - Binary classification

Wasserstein GAN (WGAN)

- Alternative to classical GAN training
 - ➡ Helps improve the stability of the training
 - ➡ Use Wasserstein-1 distance as a loss function
 - ➡ Critic network does regression (i.e. gives a score)
- Second network to constrain the energy

Results: Cell energy and Number of hits

- Both GAN and WGAN <u>fail</u> to capture MIP bump around 0.2 MeV
- ✓ BiB-AE is able to produce this feature thanks to Post-Processing network

- GAN and WGAN slightly <u>underestimate</u> the total number of hits
- ✓ BiB-AE reproduces the shape and width

Results: Other important distributions

 ✓ the shape, center and width of the peak are well reproduced for all models

- ✓ reproduce the bulk of the distributions very well.
 - slight deviations for the WGAN appear around the edges
- Deviations for BiB-AE
 - ✓ Explainable via latent space encoding

Hadron Showers a bit tricky...

- After success with GAN based simulation for electromagnetic showers, we started to address hadronic (pion) showers
- Much more complex shower structure
- Currently training with a smaller 3D image containing only the shower core
- Started with GAN, WGAN, BIB-AE and alternatives

A new WGAN

- Trained on 40 GeV showers. Approx half a million
- Shower is 48x13x13
- Architectures
 - very similar to WGAN in our "getting high paper"
 - Latent Optimized WGAN, inspired by DeepMind

Our classical WGAN

<u>arXiv: 1912.00953</u>

Figure 3: (a) Schematic of LOGAN. We first compute a forward pass through G and D with a sampled latent z. Then, we use gradients from the generator loss (dashed red arrow) to compute an improved latent, z'. After we use this optimised latent code in a second forward pass, we compute gradients of the discriminator back through the latent optimisation into the model parameters θ_D , θ_G . We use these gradients to update the model. (b) Truncation curves illustrate the FID/IS trade-off

WGAN update

- Trained on 40 GeV showers. Approx half a million
- Shower is 48x13x13

Conclusion

Application of generative models to high resolution EM shower simulation

 \checkmark Modelling of MIP peak and high fidelity

✓ Speedup: 3 orders of magnitude

• Architectures:

 $\odot \ GAN$

WGAN

• BIB-AE (New!)

• Future Plans:

• condition on incident position/angle

 ${\scriptstyle \scriptsize \textcircled{o}}$ hadronic showers

• CMS HGCal

 ${\scriptstyle \odot}$ integrate into existing tools / frameworks

Paper: [arxiv:2005.05334] (submitted to journal, soon to be published)

Backup

New Challenge: CMS HGCal

Planned High Granular Calorimeter for CMS Experiment

- HGCAL is a **sampling** calorimeter
- Silicon sensors in CE-E and high radiation regions of CE-H
- Scintillating tiles with SiPM readout in low-radiation regions of CE-H
- 3D imaging calorimeter with timing capabilities

Application of generative networks to CMS HGCal has started in our group with **close collaboration** with experts in the field

Stay tuned for our preliminary results!!

Correlations

GEANT4 - BIB-AE PP

GEANT4 - GAN

GEANT4 - WGAN

✓ Correlations between individual shower properties present in GEANT4 are correctly reproduced by our generative models

Challenges

Quality measures:

- Reproduce Geant4 showers
- <u>Shower shape variables have to be examined, especially:</u>
 - Number of hits
 - Radial & longitudinal profile
- Differential energy distributions: shape & accuracy

Energy conditioning

- Condition generator / decoder on incoming particle's energy
 - Not same as visible (or reconstructed) energy!

17

$L = \mathrm{KLD} + L_{CriticL} + L_{Critic} + L_{CriticDiff}$

Bounded Information Bottleneck AutoEncoder (BiB-AE)

- It expands VAE structure
- Additional critics for
 - Latent space regularisation
 - Reconstruction
- Inspired by CS paper

BiB-AE

Post Processor Network for final cell-energy tuning!!

Results: Linearity and Width

 ✓ Overall good modelled by all generative models. Deviations up to few percent Overestimated by GAN and WGAN

Distributions...

Computation Time

Simulator	Hardware	Batch Size	$15 \mathrm{GeV}$	Speed-up	10-100 GeV Flat	Speed-up
GEANT4	CPU	N/A	$1445.05 \pm 19.34 \ {\rm ms}$	-	$4081.53 \pm 169.92 \ {\rm ms}$	-
WGAN	CPU	1	$64.34 \pm 0.58 \text{ ms}$	$\mathbf{x23}$	$63.14 \pm 0.34 \text{ ms}$	$\mathbf{x65}$
		10	$59.53 \pm 0.45 \text{ ms}$	$\mathbf{x24}$	$56.65 \pm 0.33 \text{ ms}$	$\mathbf{x72}$
		100	$58.31 \pm 0.93 \text{ ms}$	$\mathbf{x25}$	$58.11 \pm 0.13 \text{ ms}$	$\mathbf{x70}$
		1000	$57.99\pm0.97~\mathrm{ms}$	(x25)	$57.99\pm0.18~\mathrm{ms}$	(x70)
BIB-AE	CPU	1	$426.60 \pm 3.27 \text{ ms}$	$\mathbf{x3}$	$426.32 \pm 3.62 \text{ ms}$	x10
		10	$422.60 \pm 0.26 \text{ ms}$	$\mathbf{x3}$	$424.71 \pm 3.53 \text{ ms}$	x10
		100	$419.64\pm0.07~\mathrm{ms}$	$\mathbf{x3}$	$418.04\pm0.20~\mathrm{ms}$	x10
WGAN	GPU	1	$3.24 \pm 0.01 \text{ ms}$	$\mathbf{x446}$	$3.25 \pm 0.01 \text{ ms}$	x1256
		10	$6.13 \pm 0.02 \text{ ms}$	$\mathbf{x236}$	$6.13 \pm 0.02 \text{ ms}$	x666
		100	$5.43 \pm 0.01 \text{ ms}$	$\mathbf{x266}$	$5.43 \pm 0.01 \text{ ms}$	$\mathbf{x752}$
		1000	$5.43\pm0.01~\mathrm{ms}$	$\mathbf{x266}$	$5.43\pm0.01~\mathrm{ms}$	$\mathbf{x752}$
BIB-AE	GPU	1	$3.14\pm0.01~\mathrm{ms}$	x838	$3.19\pm0.01~\mathrm{ms}$	x1279
		10	$1.56 \pm 0.01 \text{ ms}$	$\mathbf{x1287}$	$1.57 \pm 0.01 \text{ ms}$	$\mathbf{x2600}$
		100	$1.42\pm0.01~\mathrm{ms}$	x1366	$1.42\pm0.01~\mathrm{ms}$	x2874

For 10-100 GeV showers, Bib-AE and WGAN

- 3 orders of magnitude speed-up on **GPU**
- 2 orders of magnitude speed-up on CPU

WGAN + PP

