

The Drell-Yan cross section at three loops

Claude Duhr

based on work in collaboration with Falko Dulat and Bernhard Mistlberger

> A Loop Summit 27 July 2021

QCD at the LHC

- The LHC is becoming a precision machine, where we can test the Standard Model at percent-level accuracy.
 - ➡ Need theory prediction at the same level of accuracy!
- Standard approach to LHC computations: QCD factorisation + perturbation theory.

$$\sigma_{p\,p\to X}(S) = \sum_{i,j} \int_0^1 dx_1 \, dx_2 \, f_i(x_1, \mu_F^2) \, f_j(x_2, \mu_F^2) \, \hat{\sigma}_{ij\to X}(\hat{s}, \mu_F^2) \qquad S = E_{CoM}^2$$
$$\hat{s} = x_1 x_2 S$$

$$\hat{\sigma}_{ij\to X} = \hat{\sigma}_0 + \alpha_s(\mu_R)\,\hat{\sigma}_1 + \alpha_s(\mu_R)^2\,\hat{\sigma}_2 + \dots \qquad \alpha_s(m_Z^2) = 0.118$$

- Naive counting: NLO $\rightarrow 10\%$ NNLO $\rightarrow 1\%$
 - We know several examples where this naive counting fails (e.g. Higgs production).

The cross section

• The NLO cross section:

Virtual corrections ('loops')

Real emission

• The NNLO cross section:

Double virtual

Real-virtual

Double real

The cross section

• The N3LO cross section:

Quark-initiated processes

- A few years ago we had computed the Higgs cross section at N3LO.
- We have recently completed the computation of N3LO cross section for $b\bar{b} \to H$, $pp \to \gamma^*$, $pp \to W^{\pm}$ and $pp \to W^{\pm}H$.
- Twofold opportunity:
 - ➡ Understand structure of QCD at N3LO.
 - ➡ Explore pheno implications.
- Spin-off: First independent confirmation of all 3-loop splitting functions. [Moch, Vermaseren, Vogt]
- Remainder of this talk: Focus on phenomenology of Drell-Yan production at N3LO.

Phenomenology at N3LO

Convergence of the perturbative series

PDF effects

Energy variation

11. LHC bbH Higgs production: PDF4LHC15 8.7 $P P \rightarrow H + X (b\overline{b}H)$ [qd] b 4.4 – NLO – LO Nice convergence of - NNLO - N3LO perturbative expansion. 2.2 LHC pp→h+X aluon fusion ■ LO ■ NLO ■ NNLO ■ NNNLO MSTW08 68cl 1.25 $=\mu_R=\mu_F \in [m_H/4, m_H]$ entral scale: $\mu = m_{\mu}/2$ 1 40 0.75 ggH 0.5 30 0.25 ∂/pb 10 20 30 50 70 60 80 100 **40** 90 E_{COM} [TeV] 20 Choice of central scales: 10 ggH: $\mu_F = \mu_R = m_H/2$ 0.3 0.2 bbH: $\mu_F = m_H/4$, $\mu_R = m_H$ 0.1 0.0 -0.1 -0.2 [[]2 6 10 12 14 4 √S /TeV

Q-variation (W)

WH production

Scale dependence (W)

Scale dependence

- For Higgs (ggH & bbH): Scale bands overlap very well (for smallish μ_F).
- For DY (photon recently confirmed by Chen, Gehrmann, Glover, Huss, Yang): Scale bands do not overlap over a large range of virtualities.
 - ➡ Difference in central values: few %.
 - → For both μ_F and μ_R .
 - → All results obtained with pdf4lhc_nnlo_mc (more later).
- Observation: Large cancellation between channels for DY at NNLO and N3LO (both photon and W).
 - ➡ No cancellation for Higgs.

Cross section ratios

$$R_{XY}(Q) = \frac{\sigma_X(Q)}{\sigma_Y(Q)}, \qquad X, Y \in \{W^{\pm}, \gamma^*\}.$$

- Prescriptions for ratios:
 - ➡ A: Ratio of expansions, correlated scales.
 - ➡ B: Ratio of expansions, uncorrelated scales.
 - ➡ A': Expansion of ratio, correlated scales.
 - ➡ B': Expansion of ratio, uncorrelated scales.
 - ➡ C: Progression of series, correlated scales:

$$\delta(\text{pert.}) = \pm \left| 1 - \frac{R_{XY}^{(n)}(Q)}{R_{XY}^{(n-1)}(Q)} \right| \times 100\%$$

Cross section ratios

$R_{W^+W^-}$	(Q =	$= m_W)$
--------------	------	----------

	NLO		NNLO		N ³ LO	
μ^{cent}	m_W	$m_W/2$	m_W	$m_W/2$	m_W	$m_W/2$
Α	$1.342^{+0.10\%}_{-0.08\%}$	$1.342^{+0.07\%}_{-0.05\%}$	$1.348^{+0.12\%}_{-0.10\%}$	$1.349^{+0.15\%}_{-0.11\%}$	$1.350^{+0.05\%}_{-0.06\%}$	$1.350^{+0.04\%}_{-0.05\%}$
$\mathbf{A'}$	$1.343^{+0.13\%}_{-0.16\%}$	$1.344_{-0.21\%}^{+0.10\%}$	$1.349^{+0.13\%}_{-0.09\%}$	$1.351^{+0.33\%}_{-0.13\%}$	$1.350^{+0.02\%}_{-0.03\%}$	$1.350^{+0.01\%}_{-0.09\%}$
В	$1.342_{-8.08\%}^{+8.82\%}$	$1.342^{+12.9\%}_{-11.4\%}$	$1.348^{+2.26\%}_{-2.31\%}$	$1.349^{+2.24\%}_{-2.27\%}$	$1.350^{+2.21\%}_{-2.14\%}$	$1.350^{+2.21\%}_{-2.14\%}$
B'	$1.343^{+5.28\%}_{-7.40\%}$	$1.344_{-8.97\%}^{+8.09\%}$	$1.349^{+1.85\%}_{-2.63\%}$	$1.351^{+2.21\%}_{-2.24\%}$	$1.350^{+\bar{2}.\bar{60\%}}_{-2.25\%}$	$1.350^{+4.65\%}_{-2.70\%}$
С	$1.342^{+0.99\%}_{-0.99\%}$	$1.342^{+0.58\%}_{-0.58\%}$	$1.349_{-0.52\%}^{+0.52\%}$	$1.349^{+0.53\%}_{-0.53\%}$	$1.350_{-0.15\%}^{+0.15\%}$	$1.350^{+0.11\%}_{-0.11\%}$

- Almost no difference between "expansion of ratio" or "ratio of expansions" already at lower orders.
- Large difference for scale variation between correlated and uncorrelated.
- ➡ Ratio is extremely stable in perturbation theory.

Cross section ratios

Q [GeV]

Phenomenology at N3LO

Convergence of the perturbative series

PDF effects

PDF+ α_s -uncertainty

- Dependence of the cross on PDF+ α_s : ~2–9% at LHC energies.
 - Central set: pdf4lhc_nnlo_mc.
 - Uncertainty band obtained following PDF4LHC recommendation.

Missing N3LO PDFs

- We do not have N3LO PDFs
- This introduces a mismatch in our calculation.
- Estimate of the uncertainty:

$$\delta_{\rm PDF}^{\rm N^3LO} = \frac{1}{2} \left| \frac{\sigma_{\rm NNLO-PDFs}^{\rm NNLO} - \sigma_{\rm NLO-PDFs}^{\rm NNLO}}{\sigma_{\rm NNLO-PDFs}^{\rm NNLO}} \right|$$

- The factor 1/2 takes into account that this estimate is most likely overly conservative.
 - ➡ cf. convergence pattern of DIS.

1.04
Photon DIS

$$---$$
 N²LO/NLO
 $---$ N³LO/N²LO
 0.98
 $\alpha_{\rm S} = 0.2, N_{\rm f} = 4$
 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1
X

Missing N3LO PDFs

- In all cases we observe $\delta_{\rm PDF}^{\rm N^3LO} \sim 1-3\%$.
- N.B.: Current PDF sets use NNLO Drell-Yan data in the fits.
 - Some higher-order corrections fitted into PDFs?
 - Impact on scale variation for DY?

Impact of PDF choice

No qualitative differences between different sets!

	$Q[{\rm GeV}]$	$K_{QCD}^{N^3LO}$	$\delta_{ m scale}$
ggH		1.04	$+0.21\% \\ -2.37\%$
bbH		0.978	$+3.0\%\ -4.8\%$
DY/W	30	0.952	$^{+1.5\%}_{-2.5\%}$
	90	0.978	$+0.75\% \\ -0.89\%$
	150	0.985	$+0.50\% \\ -0.54\%$
HW+		0.984	$+0.58\%\ -0.30\%$
HW-	F	0.994	+0.33%
ggHH		1.03	+0.66% -2.8%
VBF(DI	S, 14 TeV)	0.999	$+0.05\% \\ -0.05\%$

Typical PDF uncertainty: $\delta_{\rm PDF} \sim 2 - 9\%$

Missing N3LO PDFs:

 $\delta_{\rm PDF}^{\rm N^3LO} \sim 1-3\%$