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10 6 Results

Figure 6: The triple-differential dijet cross section in six bins of y⇤ and yb. The data are indicated
by different markers for each bin. The theoretical predictions, obtained with NLOJET++ and
NNPDF 3.0, and complemented with EW and NP corrections, are depicted by solid lines. Apart
from the boosted region, the data are well described by the predictions at NLO accuracy over
many orders of magnitude.
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30 9. Quantum Chromodynamics

in this category, removing this pre-average would not change the final result within the quoted
uncertainty.
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Figure 9.3: Summary of measurements of –s as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of –s is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO).

9.4.3 Deep-inelastic scattering and global PDF fits:

Studies of DIS final states have led to a number of precise determinations of –s: a combination [501]
of precision measurements at HERA, based on NLO fits to inclusive jet cross sections in neutral
current DIS at high Q

2, provides combined values of –s at di�erent energy scales Q, as shown
in Fig. 9.3, and quotes a combined result of –s(M2

Z
) = 0.1198 ± 0.0032. A more recent study

of multijet production [373], based on improved reconstruction and data calibration, confirms the
general picture, albeit with a somewhat smaller value of –s(M2

Z
) = 0.1165±0.0039, still at NLO. An
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1 Introduction
The pairwise production of hadronic jets is one of the fundamental processes studied at hadron
colliders. Dijet events with large transverse momenta can be described by parton-parton scat-
tering in the context of quantum chromodynamics (QCD). Measurements of dijet cross sections
can be used to thoroughly test predictions of perturbative QCD (pQCD) at high energies and to
constrain parton distribution functions (PDFs). Previous measurements of dijet cross sections
in proton-(anti)proton collisions have been performed as a function of dijet mass at the Spp̄S,
ISR, and Tevatron colliders [1–6]. At the CERN LHC, dijet measurements as a function of dijet
mass are reported in Refs. [7–11]. Also, dijet events have been studied triple-differentially in
transverse energy and pseudorapidities h1 and h2 of the two leading jets [12, 13].

In this paper, a measurement of the triple-differential dijet cross section is presented as a func-
tion of the average transverse momentum pT,avg = (pT,1 + pT,2)/2 of the two leading jets, half
of their rapidity separation y⇤ = |y1 � y2|/2, and the boost of the dijet system yb = |y1 + y2|/2.
The dijet event topologies are illustrated in Fig. 1.
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Figure 1: Illustration of the dijet event topologies in the y⇤ and yb kinematic plane. The dijet
system can be classified as a same-side or opposite-side jet event according to the boost yb of
the two leading jets, thereby providing insight into the parton kinematics.

The relation between the dijet rapidities and the parton momentum fractions x1,2 of the incom-
ing protons at leading order (LO) is given by x1,2 =

pTp
s (e±y1 + e±y2), where pT = pT,1 = pT,2.

For large values of yb, the momentum fractions carried by the incoming partons must corre-
spond to one large and one small value, while for small yb the momentum fractions must be
approximately equal. In addition, for high transverse momenta of the jets, x values are probed
above 0.1, where the proton PDFs are less precisely known.

The decomposition of the dijet cross section into the contributing partonic subprocesses is
shown in Fig. 2 at next-to-leading order (NLO) accuracy, obtained using the NLOJET++ pro-
gram version 4.1.3 [14, 15]. At small yb and large pT,avg a significant portion of the cross section
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££�´ ʞɻǩȣǊ �ȣʉƟȣȣŒ ȋȴƁŒȋࢍ ɻʞŷʉɫŒƁʉǩȴȣࢎ

σ££�´ =

∫

Φw+3

(
/σ__

££�´ − /σa
££�´

)

+

∫

Φw+2

(
/σ_o

££�´ − /σh
££�´

)

! /σa
ࡪ´�££ /σh

ࡩ´�££
ȝǩȝǩƁ /σ__

ࡪ´�££ /σ_o
££�´

ǩȣ ʞȣɫƟɻȴȋʻƟƌ ȋǩȝǩʉɻ

! /σh
ࡪ´�££ /σl

ࡩ´�££
ŒȠŒȈˁʂǦƀ ƁŒȣƁƟȋȋŒʉǩȴȣ ȴǇ
ɠȴȋƟɻ ǩȣ /σ_o

ࡪ´�££ /σoo
££�´+

∫

Φw+1

(
/σoo

££�´ − /σl
££�´

)

∑
˨ȣǩʉƟ − 0

⇒ ƟŒƁǞ ȋǩȣƟ ɻʞǩʉŒŷȋƟ Ǉȴɫ ȣʞȝƟɫǩƁŒȋ ƟʻŒȋʞŒʉǩȴȣ ǩȣ D = 4

5ǩǇǇƟɫƟȣʉ ȝƟʉǞȴƌɻࡩ
! �ȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ

5Ɵ࢖cƟǞɫȝŒȣȣࢁ æǩƌƌƟɫࡪ cƟǞɫȝŒȣȣࡪ cȋȴʻƟɫ ࢂࠌࠇࢪ
! +ȴ�ȴɫ`ʞȋ ɻʞŷʉɫŒƁʉǩȴȣ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ

5Ɵȋࢁ 5ʞƁŒࡪ ðȴȝȴǊˈǩࡪ üɫȴƁɻŒȣˈǩ ࢂࠌࠇࢪ
! qh ɻʞŷʉɫŒƁʉǩȴȣ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ

ࡪŒʉŒȣǩ+ࢁ cɫŒ˔˔ǩȣǩ ࢂࠎࠇࢪ
! ðƟƁʉȴɫ࢙ǩȝɠɫȴʻƟƌ ɫƟɻǩƌʞƟ ɻʞŷʉɫŒƁʉǩȴȣ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ

Œȅȴȣ˔+ࢁ ࡪࢂࠇࠈࢪ ࡪȴʞǊǞƟ˔Œȋ#ࢁ �Ɵȋȣǩȅȴ ࡪ̒ ßƟʉɫǩƟȋȋȴ ࢂࠈࠈࢪ
! N࢙ǽƟʉʉǩȣƟɻɻ ɻʞŷʉɫŒƁʉǩȴȣ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ

ࡪcŒʞȣʉࢁ ðʉŒǞȋǞȴǇƟȣࡪ üŒƁȅȝŒȣȣࡪ īŒȋɻǞ ࢂࠌࠈࢪ
ࡪȴʞǊǞƟ˔Œȋ#ࢁ `ȴƁȅƟࡪ �ǩʞࡪ ßƟʉɫǩƟȋȋȴ ࢂࠌࠈࢪ

! ßɫȴǽƟƁʉǩȴȣ࢙ʉȴ࢙#ȴɫȣ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ
ࡪŒƁƁǩŒɫǩ+ࢁ Ɵʉ Œȋࡱ ࢂࠌࠈࢪ

! £ƟɻʉƟƌ ɻȴǇʉ࢙ƁȴȋȋǩȣƟŒɫ ɻʞŷʉɫŒƁʉǩȴȣ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ
ࡪŒȴȋŒ+ࢁ �Ɵȋȣǩȅȴ ࡪ̒ æɁȣʉɻƁǞ ࢂࠎࠈࢪ

. . .

use simple processes (
) 

to reconstruct singularities of 

arbitrary processes (
) colour ordering

1 → 2
n → m

Antenna subtraction

NNLO USING SUBTRACTION
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ANTENNA FACTORIZATION�ȣʉƟȣȣŒ ǇŒƁʉȴɫǩɻŒʉǩȴȣ

! ŒȣʉƟȣȣŒ ǇȴɫȝŒȋǩɻȝ ȴɠƟɫŒʉƟɻ ȴȣ ƀȰȈȰʗɥࢗȰɥƊƝɥƝƊ ŒȝɠȋǩʉʞƌƟɻ
! Ɵˇɠȋȴǩʉ ʞȣǩʻƟɫɻŒȋ ǇŒƁʉȴɫǩɻŒʉǩȴȣ ɠɫȴɠƟɫʉǩƟɻ ǩȣ xæ ȋǩȝǩʉɻ

|A0
m+1(. . . , i, j, k, . . .)|2

j ʞȣɫƟɻȴȋʻƟƌ−−−−−−−→ X0
3 (i, j, k) |A0

m(. . . , Ĩ, K̃, . . .)|2
︸ ︷︷ ︸
Ɓȴȋȴʞɫ࢙ȴɫƌƟɫƟƌ ŒȝɠȋǩʉʞƌƟ

︸ ︷︷ ︸
ŒȣʉƟȣȣŒ ǇʞȣƁʉǩȴȣ

+ ȝŒɠɠǩȣǊ
{pi, pj , pk} → {p̃I , p̃K}

︸ ︷︷ ︸
ɫƟƌʞƁƟƌ �D

! ƁŒɠʉʞɫƟɻ ȚʗȈʂǦɛȈƝ ȈǦȚǦʂɵ Œȣƌ ɻȝȴȴʉǞȋˈ ǩȣʉƟɫɠȴȋŒʉƟɻ ŷƟʉʿƟƟȣ ʉǞƟȝ∗

ȋǩȝǩʉ X0
3 (i, j, k) ȝŒɠɠǩȣǊ

pj → 0
2sik
sijsjk

p̃I → piࡪ p̃K → pk

pj ‖ pi
1

sij
Pij(z) p̃I → (pi + pj)ࡪ p̃K → pk

pj ‖ pk
1

sjk
Pkj(z) p̃I → piࡪ p̃K → (pj + pk)

∗ ƁࡱǇࡱ ƌǩɠȴȋƟɻࡩ X0
3 (i, j, k) ∼ Dij,k + Dkj,i

7



ANTENNA FACTORIZATION�ȣʉƟȣȣŒ ǇŒƁʉȴɫǩɻŒʉǩȴȣ

! ŒȣʉƟȣȣŒ ǇȴɫȝŒȋǩɻȝ ȴɠƟɫŒʉƟɻ ȴȣ ƀȰȈȰʗɥࢗȰɥƊƝɥƝƊ ŒȝɠȋǩʉʞƌƟɻ
! Ɵˇɠȋȴǩʉ ʞȣǩʻƟɫɻŒȋ ǇŒƁʉȴɫǩɻŒʉǩȴȣ ɠɫȴɠƟɫʉǩƟɻ ǩȣ xæ ȋǩȝǩʉɻ

|A0
m+2(. . . , i, j, k, l, . . .)|2

j ॹ k ʞȣɫƟɻȴȋʻƟƌ−−−−−−−−−→ X0
4 (i, j, k, l) |A0

m(. . . , Ĩ, L̃, . . .)|2
︸ ︷︷ ︸
Ɓȴȋȴʞɫ࢙ȴɫƌƟɫƟƌ ŒȝɠȋǩʉʞƌƟ

︸ ︷︷ ︸
ŒȣʉƟȣȣŒ ǇʞȣƁʉǩȴȣ

+ ȝŒɠɠǩȣǊ
{pi, pj , pk, pl} → {p̃I , p̃L}

︸ ︷︷ ︸
ɫƟƌʞƁƟƌ �D

! ƁŒɠʉʞɫƟɻ ȚʗȈʂǦɛȈƝ ȈǦȚǦʂɵ Œȣƌ ɻȝȴȴʉǞȋˈ ǩȣʉƟɫɠȴȋŒʉƟɻ ŷƟʉʿƟƟȣ ʉǞƟȝ∗

ȋǩȝǩʉ X0
3 (i, j, k) ȝŒɠɠǩȣǊ

pj → 0
2sik
sijsjk

p̃I → piࡪ p̃K → pk

pj ‖ pi
1

sij
Pij(z) p̃I → (pi + pj)ࡪ p̃K → pk

pj ‖ pk
1

sjk
Pkj(z) p̃I → piࡪ p̃K → (pj + pk)

∗ ƁࡱǇࡱ ƌǩɠȴȋƟɻࡩ X0
3 (i, j, k) ∼ Dij,k + Dkj,i

! ƌȴʞŷȋƟ ɻȴǇʉࡩ j, k → 0

! ʉɫǩɠȋƟ࢙ƁȴȋȋǩȣƟŒɫࡩ
(i ‖ j ‖ k) ॹ (j ‖ k ‖ l)

! ƌȴʞŷȋƟ ƁȴȋȋǩȣƟŒɫࡩ (i ‖ j), (k ‖ l)
! ɻȴǇʉ࢖ƁȴȋȋǩȣƟŒɫࡩ

(i ‖ j), k → 0 ॹ (k ‖ l), j → 0

! ɻǩȣǊȋƟ࢙ʞȣɫƟɻȴȋʻƟƌ
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££�´΁̺ϫ

Ĳࡱ +ǞƟȣࡪ ࡱ� +ɫʞ˔࢙�ŒɫʉǩȣƟ˔ࡪ ࡱ� +ʞɫɫǩƟࡪ æࡱ cŒʞȋƌࡪ ࡱ� cƟǞɫȝŒȣȣ5࢙Ɵ æǩƌƌƟɫࡪ
üࡱ cƟǞɫȝŒȣȣࡪ Dࡱīࡱ£ࡱ cȋȴʻƟɫࡪ ࡱ� oɁǇƟɫࡪ �oࡪ xࡱ �ŒǽƟɫࡪ ࡱ� �ȴࡪ üࡱ �ȴɫǊŒȣࡪ ࡱ� £ǩƟǞʞƟɻࡪ

ࡱ� ßǩɫƟɻࡪ ࡱ5 īŒȋȅƟɫࡪ ࡱ� īǞǩʉƟǞƟŒƌ

ßɫȴƁƟɻɻƟɻ ƁȴȝɠʞʉƟƌ ʞɻǩȣǊ ʉǞƟ ŒȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣ ȝƟʉǞȴƌ

! TT → V ॸ ££�´
! TT → V + j ॸ ££�´

↪→ V → ""̄ Vࢍ = w/γ∗, q±ࢎ
! TT → ǽƟʉɻ ࡱǩȣƁࢍ ǽƟʉɻࡪ ࢎǽࠉ ॸ ££�´
! TT → γ + j ॸ ££�´
! 2T → 1j ॸ ´�ࠊ£
! 2T → 2j ॸ ££�´
! 2+2− → 3 ǽƟʉɻ ॸ ££�´

! TT → > ࢎǊǊoࢍ ॸ ´�ࠊ£
! TT → > + j ࢎǊǊoࢍ ॸ ££�´
! TT → > + 2j ࢎ`#Ĩࢍ ॸ ££�´

↪→ > → γγ, ττ, V γ, V V

! TT → V > ॸ ££�´
↪→ > → # �#

! ࡬

9ࠋ



££�´΁̺ϫ

Ĳࡱ +ǞƟȣࡪ ࡱ� +ɫʞ˔࢙�ŒɫʉǩȣƟ˔ࡪ ࡱ� +ʞɫɫǩƟࡪ æࡱ cŒʞȋƌࡪ ࡱ� cƟǞɫȝŒȣȣ5࢙Ɵ æǩƌƌƟɫࡪ
üࡱ cƟǞɫȝŒȣȣࡪ Dࡱīࡱ£ࡱ cȋȴʻƟɫࡪ ࡱ� oɁǇƟɫࡪ �oࡪ xࡱ �ŒǽƟɫࡪ ࡱ� �ȴࡪ üࡱ �ȴɫǊŒȣࡪ ࡱ� £ǩƟǞʞƟɻࡪ

ࡱ� ßǩɫƟɻࡪ ࡱ5 īŒȋȅƟɫࡪ ࡱ� īǞǩʉƟǞƟŒƌ

ßɫȴƁƟɻɻƟɻ ƁȴȝɠʞʉƟƌ ʞɻǩȣǊ ʉǞƟ ŒȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣ ȝƟʉǞȴƌ

! TT → V ॸ ££�´
! TT → V + j ॸ ££�´

↪→ V → ""̄ Vࢍ = w/γ∗, q±ࢎ
! TT → ǽƟʉɻ ࡱǩȣƁࢍ ǽƟʉɻࡪ ࢎǽࠉ ॸ ££�´
! TT → γ + j ॸ ££�´
! 2T → 1j ॸ ´�ࠊ£
! 2T → 2j ॸ ££�´
! 2+2− → 3 ǽƟʉɻ ॸ ££�´

! TT → > ࢎǊǊoࢍ ॸ ´�ࠊ£
! TT → > + j ࢎǊǊoࢍ ॸ ££�´
! TT → > + 2j ࢎ`#Ĩࢍ ॸ ££�´

↪→ > → γγ, ττ, V γ, V V

! TT → V > ॸ ££�´
↪→ > → # �#

! ࡬

ࠋ

p p → "colour neutral" + 0,1,2 jets

NNLO subtraction set up for
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THE PLAN.

๏ Antenna Subtraction  

  &  the NNLOJet Framework  

๏ Inclusive Jets  

  —  IR Sensitivity & Scale Choices 

๏ Di-Jet Production  

  —  3D Measurements 

๏ Impact on PDFs  

  &  Interpolation Tables 



INCLUSIVE JET PRODUCTIONxȣƁȋʞɻǩʻƟ �Ɵʉ ßɫȴƌʞƁʉǩȴȣ

{
n ɫƟƁȴȣɻʉɫʞƁʉƟƌ ǽƟʉɻ

ǩȣ ʉǞƟ ƟʻƟȣʉ

}
←→

{
n ŷǩȣȣǩȣǊɻ ʉȴ
ʉǞƟ ǞǩɻʉȴǊɫŒȝ

}
⇒

∑

ŷǩȣɻ

/σǩȣƁ
/ph

$= σʉȴʉ

ɻƁŒȋƟ ƁǞȴǩƁƟɻ ! ŷǩȣȣǩȣǊ ȴǇ ǦȠƊǦʴǦƊʗŒȈ ǺƝʂɵ ʻɻࡱ ƝʴƝȠʂɵ
" ࢨǊȋȴŷŒȋࢧ ɻƁŒȋƟɻ ࡩࢎƟʻƟȣʉࢍ ph,K�tࡪ 〈ph〉ࡪ ࡬
" ࢨȋȴƁŒȋࢧ ɻƁŒȋƟɻ ࡩࢎǽƟʉࢍ phࡪ ࡬

dσinc

dpj
T

=
dσ

dpj1
T

+
dσ

dpj2
T

+
dσ

dpj3
T

+ ⋯

๏ many scale choices possible: 

‣ “event based”  —   ,  ,  , … 

‣ “jet based”  —   , …

pT,max ⟨pT⟩ ĤT

pT



INCLUSIVE JET PRODUCTION —- SCALES    V.S.  pT pT,1

12

๏ NNLO  (anti-   R=0.4) 

๏ high-  

‣ both scales coincide 

๏ low-  

‣ significant differences  15–20% 

‣ non-overlapping bands                  
NLO  NNLO  (larger) 

‣  closer to data 

kT

pT

pT

→

pT

 0.6
 0.8

 1
 1.2
 1.4

NNLOJET

N
N

LO
 R

at
io

 to
 d

at
a

   |yj| < 0.5   

ATLAS, 7 TeV, anti-kt jets, R=0.4, NNPDF3.0 µ=pT1
µ=pT

 0.6
 0.8

 1
 1.2
 1.4

0.5 < |yj| < 1.0

 0.6
 0.8

 1
 1.2
 1.4

1.0 < |yj| < 1.5

 0.6
 0.8

 1
 1.2
 1.4

1.5 < |yj| < 2.0

 0.6
 0.8

 1
 1.2
 1.4

2.0 < |yj| < 2.5

 0.6
 0.8

 1
 1.2
 1.4

 100  1000

2.5 < |yj| < 3.0

pT (GeV)

Figure 2 – NLO predictions (left plot) and NNLO predictions (right plot) normalized to data for two di↵erent scale

choices, individual jet pT (red) and leading jet pT (green). The bands correspond to the variation of µ = µR = µF

by factors of 0.5 and 2 about the central scale choice.

coe�cient increases the NLO result at the 10% level at low pT for all rapidity slices while the
e↵ects at high-pT are small. The shape of the NNLO/NLO k-factor is getting steeper in the
forward rapidity slices. On the other hand using the pT scale choice we see that at low-pT the
NNLO/NLO k-factor provides a negative 10% correction, decreases in magnitude at higher pT
and the shape of the NNLO/NLO k-factor flattens in the forward rapidity slices. The di↵erence
in the shape of the k-factor between the two scale choices seems to indicate that there is a po-
tential interplay between the scale choice in the theory prediction and a consistent fit of jet data
in PDF’s for all rapidity slices simultaneously. For this reason a detailed study of the e↵ects of
the single jet inclusive datasets and NNLO theory predictions on PDF fits is required for more
substantive conclusions

In Fig. 2 we present the comparison of the theory predictions at NLO and NNLO with the
ATLAS data for the two scale choices. Looking at the results at NLO on the left side of the
figure, we find small di↵erences in the central value of the predictions at low-pT which are inside
the scale dependence of the NLO prediction, estimated by varying both central scale choices
by a factor of two and one half and represented by the thickness of the bands. We observe
that both scale choices show an asymmetric scale band where the central value of the prediction
sits at the top of the band. Moreover the scale uncertainty of the NLO prediction at low-pT
is underestimated due to the turnover of the NLO coe�cient from negative to positive. Scale
uncertainties at high-pT are around 20% rising to 40% for forward jets. When comparing the
results with the data we do not include non-perturbative e↵ects; they are quantified in Ref. 11

and found to be a 2% e↵ect in the lowest pT bin and at most a 1% e↵ect in all other bins.

In the same figure on the right side we compare the data with the predictions at NNLO
in QCD. In comparison with the results at NLO we observe that both scale choices show a
more reliable symmetric scale variation. The scale uncertainty at NNLO is at the 10% level
at low-pT and at the percent level at high-pT . At high-pT the predictions with µ = pT1 and
µ = pT coincide whereas at the low-pT we observe significant di↵erences which are outside the
NNLO scale variation band. At low-pT we find the behaviour somewhat di↵erent to NLO: the
NNLO correction for the pT1 scale moves the prediction away from the data, with which it was
consistent at NLO; whereas using the pT scale brings the NNLO prediction in line with the data
with which there was some tension at NLO. The significant e↵ect of this scale ambiguity on the

μ0 = pT,1

μ0 = pT

Large effects from scales ambiguity!



INCLUSIVE JET PRODUCTION —- SCALE CHOICES  (R=0.4)xȣƁȋʞɻǩʻƟ �Ɵʉ ßɫȴƌʞƁʉǩȴȣ ࢕ ðƁŒȋƟ ƁǞȴǩƁƟɻ Rࢍ = ࢎ0.4
ࡪʞɫɫǩƟ+ࢁ cƟǞɫȝŒȣȣ5࢖Ɵ æǩƌƌƟɫࡪ cƟǞɫȝŒȣȣࡪ cȋȴʻƟɫࡪ �oࡪ ßǩɫƟɻ ࢂࠏࠈࢪ

310  (GeV)
T

p

0.8
1

1.2
1.4

ra
tio

 to
 N

LO

210×2 210×4 210×6

/2
T

H=µ LO NLO NNLO
310  (GeV)

T
p

0.8
1

1.2
1.4

ra
tio

 to
 N

LO

T1
=pµ LO NLO NNLO310  (GeV)

T
p

0.8
1

1.2
1.4
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tio

 to
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LO
 jets R=0.4T=13 TeV anti-ksNNLOJET

T
=pµ LO NLO NNLO

310  (GeV)
T

p

0.8
1

1.2
1.4
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tio

 to
 N

LO

210×2 210×4 210×6

T
H=µ LO NLO NNLO

310  (GeV)
T

p

0.8
1

1.2
1.4

ra
tio

 to
 N

LO

T1
=2pµ LO NLO NNLO310  (GeV)

T
p

0.8
1

1.2
1.4

ra
tio
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14

๏ desirable properties 
‣ small NNLO corrections 

‣ overlapping bands 

‣ convergence of individual spectra         
(especially stability of ) 

๏ good description of exp. data
pT,2

[Currie, Gehrmann–De Ridder, Gehrmann, Glover, AH, Pires ’18] 
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Figure 22: Double-di↵erential single jet inclusive cross-sections measurement by CMS [12]

and NNLO perturbative QCD predictions as a function of the jet pT in slices of rapidity,

for anti-kT jets with R = 0.4 normalised to the NLO result for (a) µ = 2 pT, (b) µ = ĤT

scales. The shaded bands represent the scale uncertainty.

6 Summary and Conclusions

In this paper we have studied single jet inclusive production at hadron colliders and the jet

transverse momentum distribution obtained by adding up the contributions from all jets

that are observed in an event. Our predictions include the most up-to-date second order

NNLO corrections in the perturbative expansion of the observable.

In detail we presented a breakdown of the inclusive jet-pT sample into leading and sub-

leading jet contributions and found large radiative corrections to the first and second jet

contributions (that dominate the inclusive jet sample) that largely cancel each other. By

investigating the second-jet transverse momentum distribution we identified large cancel-

lations between di↵erent kinematical event configurations, which are aggravated by certain

types of scale choices. Since the notion of leading and subleading jet is not well defined at

leading order (pT,1 = pT,2 at LO), the single jet inclusive observable is decomposed into
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FIG. 2: K-factors for Higgs plus jets (top), Z plus jets (middle) and inclusive jet production (bottom).

Fig. 2 (bottom left) shows the inclusive jet transverse momentum spectrum as predicted by the fixed-order LO,
NLO and NNLO calculations, for an R-value of 0.7, as well as the results from an NLO matched computation using
the Sherpa event generator and the NLO-matched Herwig result. In addition, a prediction from Powheg is included
as well. The NLO, Sherpa, Herwig and Powheg results are all in very good agreement with each other over the
range of the plot (� 100 GeV), i.e. there is no significant parton shower systematic and the predictions with parton
showers reflect the underlying fixed-order NLO results. The NNLO normalizations are larger due to the higher order
e↵ects included in these calculations. K-factors (NLO/LO, NNLO/LO, NNLO/NLO, from NNLOJET are shown as a
function of jet size, and as a function of the inclusive jet pT , for two di↵erent rapidity intervals. Again, the K-factors
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FIG. 9: The R-dependence of the cross sections for inclusive jet production at LO, NLO, NNLO and NLO+PS are shown,
for scale variations around a central scale of HT , as a function of jet radius, for dijet production, for leading jet transverse
momenta above 196 GeV.

Comparing the Figs. 14 - 17 we note the relative narrow distribution of grey lines that sample the di↵erent pT bins
in the case of Higgs production. One might expect that this behavior is due to the Higgs production process being
gluon-initiated. However, the decomposition into flavor channels shows that initial state quarks do play an important
role and that quark-gluon initiated processes start to dominate for high transverse momenta. This diverse flavour
composition of initial and final state does not allow us to make a definite statement without further studies.

VI. UNCERTAINTY ESTIMATES IN PROCESSES WITH FINAL-STATE JETS

The reduction of scale uncertainties achievable at NNLO is remarkable. However, the R-dependence of the uncer-
tainty discussed in Sec. V indicates that some of the improvements may be due to accidental cancellations. It is well
known, that the scale variation for exclusive cross sections is prone to the accidental compensation of logarithmically
enhanced higher-order corrections that appear both as a result of scale variations and as a result of the phase-space
restrictions. The very definition of a final-state jet implies an exclusive measurement and e↵ectively acts as a veto on
real-radiative corrections that fall outside the jet area. This e↵ect has been studied in di↵erent contexts [30, 106] An
accurate assessment of the perturbative uncertainties is important for inclusive jet production (and to a lesser extent
for Z+jet production), as the PDF fitting groups are working to incorporate scale uncertainties in their analyses, and

NLO NNLO

{ {

NNLO
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LO

➤ NLO+PS (Sherpa, Herwig, Powheg)    NLO 

➤  found to be a sweet spot 

➤ “hard” NNLO not captured by PS

≃

R ∼ 0.7

➤  pT > 196 GeV
μ0 = ĤT
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I hpTi: large NLO corrections with huge scale uncertainties
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TRIPLE-DIFFERENTIAL DI-JET CROSS SECTION

1

1 Introduction
The pairwise production of hadronic jets is one of the fundamental processes studied at hadron
colliders. Dijet events with large transverse momenta can be described by parton-parton scat-
tering in the context of quantum chromodynamics (QCD). Measurements of dijet cross sections
can be used to thoroughly test predictions of perturbative QCD (pQCD) at high energies and to
constrain parton distribution functions (PDFs). Previous measurements of dijet cross sections
in proton-(anti)proton collisions have been performed as a function of dijet mass at the Spp̄S,
ISR, and Tevatron colliders [1–6]. At the CERN LHC, dijet measurements as a function of dijet
mass are reported in Refs. [7–11]. Also, dijet events have been studied triple-differentially in
transverse energy and pseudorapidities h1 and h2 of the two leading jets [12, 13].

In this paper, a measurement of the triple-differential dijet cross section is presented as a func-
tion of the average transverse momentum pT,avg = (pT,1 + pT,2)/2 of the two leading jets, half
of their rapidity separation y⇤ = |y1 � y2|/2, and the boost of the dijet system yb = |y1 + y2|/2.
The dijet event topologies are illustrated in Fig. 1.

y⇤
=

1 2
|y

1
�

y 2
|

yb =
1
2 |y1 + y2|

0 1 2 3
0

1

2

3

Figure 1: Illustration of the dijet event topologies in the y⇤ and yb kinematic plane. The dijet
system can be classified as a same-side or opposite-side jet event according to the boost yb of
the two leading jets, thereby providing insight into the parton kinematics.

The relation between the dijet rapidities and the parton momentum fractions x1,2 of the incom-
ing protons at leading order (LO) is given by x1,2 = pTp

s (e
±y1 + e±y2), where pT = pT,1 = pT,2.

For large values of yb, the momentum fractions carried by the incoming partons must corre-
spond to one large and one small value, while for small yb the momentum fractions must be
approximately equal. In addition, for high transverse momenta of the jets, x values are probed
above 0.1, where the proton PDFs are less precisely known.

The decomposition of the dijet cross section into the contributing partonic subprocesses is
shown in Fig. 2 at next-to-leading order (NLO) accuracy, obtained using the NLOJET++ pro-
gram version 4.1.3 [14, 15]. At small yb and large pT,avg a significant portion of the cross section
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FIG. 1: Allowed kinematical regions at LO in the triple di↵erential dijet inclusive cross section (in pb) at
p
s = 8 TeV in the

partonic fraction x1, x2 plane for the jet pT cuts of the CMS measurement.

di↵erential cross section for the six event topologies con-
sidered in the CMS study is shown. The CMS analysis [3]
also performs a detailed study of the constraints on PDFs
that can be derived from the measurement data. These
turn out to be inherently limited by the precision of the
theoretical description of the underlying hard scattering
processes available.

The theoretical predictions for the jet cross section are
obtained in perturbative QCD, as a convolution of the
parton distribution functions for the incoming particles
and the parton–parton hard scattering cross section. The
previous state of the art, as used in [3], were predictions
including next-to-leading order (NLO) QCD [1, 4–6] and
electroweak (EWK, [7–9]) corrections for the di-jet pro-
duction cross section. At this level of accuracy, scale
uncertainties and missing higher order corrections in the
theoretical calculation significantly limit the achievable
precision in the determination of the shape and normali-
sation of the triple di↵erential cross section. To improve
the perturbative QCD description of this process, we
present in this letter for the first time a computation
of the NNLO corrections to the triple-di↵erential di-jet
cross section at the LHC.

Our calculation is performed in the NNLOJET frame-
work, employing the antenna subtraction method [10–
12] to remove all unphysical infrared singularities from
the matrix elements, which we take at leading-colour in
all partonic subprocess at NNLO, while keeping the full
colour dependence at lower orders. The same setup was

used for the calculation of the NNLO corrections to in-
clusive jet [13, 14] and di-jet production [15]. We use
the MMHT2014 NNLO parton distribution functions [16]
with ↵s(MZ)=0.118 for all predictions at LO, NLO and
NNLO to emphasize the role of the perturbative correc-
tions at each successive order.

The combined non-perturbative (NP) contributions
from hadronization and the underlying event, modeled
through multiple parton interactions, are not included
in the predictions at parton-level, but have been de-
rived from parton shower predictions at NLO in Ref. [3].
The corresponding NP e↵ects have been found to be at
most 10% for the lowest pT,avg bins and negligible above
1 TeV. The contribution from EWK e↵ects from virtual
exchanges of massive W and Z bosons have been com-
puted in [7]. These are smaller than 3% below 1 TeV and
reach 8% for the highest pT,avg. A recent study [17] has
shown that for the R = 0.7 cone size, there is an excel-
lent agreement for the parton-level cross section between
fixed-order and NLO-matched results. For this reason,
we will take into acount the NP and EKW e↵ects ob-
tained in [3, 7], as a multiplicative factor in each bin of
the parton-level NNLO cross section and we label the
corresponding prediction NNLO⌦NP⌦EWK.

At any given fixed order in perturbation theory, the
predictions retain some dependence on the unphysical
renormalization and factorization scales. An assess-
ment of the scale uncertainty of the calculation at NLO
and NNLO is obtained from independent variations of

x1

x2

x1,2 =
2pT,avg

s
e±yb cosh(y*)

4 4 Measurement of the triple-differential dijet cross section

the primary interaction vertex as determined by the tracker, the energy of the corresponding
ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with
originating from the electron track. The energy of muons is obtained from the curvature of the
corresponding track. The energy of charged hadrons is determined from a combination of their
momentum measured in the tracker and the matching ECAL and HCAL energy deposits, cor-
rected for zero-suppression effects and for the response function of the calorimeters to hadronic
showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected
ECAL and HCAL energies. The leading primary vertex (PV) is chosen as the one with the
highest sum of squares of all associated track transverse momenta. The remaining vertices are
classified as pileup vertices, which result from additional proton-proton collisions. To reduce
the background caused by such additional collisions, charged hadrons within the coverage of
the tracker, |h| < 2.5 [20], that unambiguously originate from a pileup vertex are removed.

Hadronic jets are clustered from the reconstructed particles with the infrared- and collinear-
safe anti-kT algorithm [21] with a jet size parameter R of 0.7, which is the default for CMS jet
measurements. The jet momentum is determined as the vectorial sum of all particle momenta
in the jet, and is found in the simulation to be within 5 to 10% of the true momentum over
the whole pT range. Jet energy corrections (JEC) are derived from the simulation, and are con-
firmed with in situ measurements of the energy balance of dijet, photon+jet, and Z boson+jet
events [22, 23]. After applying the usual jet energy corrections, a small bias in the reconstructed
pseudorapidity of the jets is observed at the edge of the tracker. An additional correction re-
moves this effect.

All events are required to have at least one PV that must be reconstructed from four or more
tracks. The longitudinal and transverse distances of the PV to the nominal interaction point of
CMS must satisfy |zPV| < 24 cm and rPV < 2 cm, respectively. Nonphysical jets are removed by
loose jet identification criteria: each jet must contain at least two PF candidates, one of which
is a charged hadron, and the jet energy fraction carried by neutral hadrons and photons must
be less than 99%. These criteria remove less than 1% of genuine jets.

Only events with at least two jets up to an absolute rapidity of |y| = 5.0 are selected and
the two jets leading in pT are required to have transverse momenta greater than 50 GeV and
|y| < 3.0. The missing transverse momentum is defined as the negative vector sum of the
transverse momenta of all PF candidates in the event. Its magnitude is referred to as pmiss

T .
For consistency with previous jet measurements by CMS, pmiss

T is required to be smaller than
30% of the scalar sum of the transverse momenta of all PF candidates. For dijet events, which
exhibit very little pT imbalance, the impact is practically negligible.

4 Measurement of the triple-differential dijet cross section
The triple-differential cross section for dijet production is defined as

d3s

dpT,avgdy⇤dyb
=

1
eLeff

int

N
DpT,avgDy⇤Dyb

,

where N denotes the number of dijet events within a given bin, Leff
int the effective integrated

luminosity, and e the product of trigger and event selection efficiencies, which are greater than
99% in the phase space of the measurement. Contributions from background processes, such
as tt production, are several orders of magnitude smaller and are neglected. The bin widths are
DpT,avg, Dy⇤, and Dyb.
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FIG. 4: The NLO (blue) and NNLO (green) theory predictions and CMS data normalized to the NLO central value. Parton-
level predictions corrected for non-perturbative (NP) e↵ects and Electroweak e↵ects (EW), implemented as a multiplicative
factor to the NNLO result, are shown shown in red. The shaded bands shown for the NLO and the NNLO⌦NP⌦EWK
predictions represent the variation of the theoretical scales in the numerator by factors of 0.5 and 2. The error in the data is
the total systematic error, including the luminosity uncertainty of 2.6%.

value of the MMHT2014 PDF set even at NNLO, in par-
ticular at large values of pT,avg.. In this region, which is
sensitive to the scattering of large-x parton on a low-x
parton (see Fig. 1), the PDFs su↵er from large uncertain-
ties. Our results at NNLO suggest that the understand-
ing of the high-x behaviour of the PDFs can be improved
upon by including measurements of triple di↵erential di-
jet distributions in future global PDF determinations.

In this letter, we computed the second-order QCD cor-
rections to the triple-di↵erential di-jet production cross
section at hadron colliders. Our results substantially im-
prove the theoretical description of this benchmark ob-
servable, with theory uncertainties now being comparable
or lower than experimental errors, while better explaining
kinematical shapes. Our newly derived results will enable
the usage of di-jet measurements in precision studies of
the partonic structure of the colliding hadrons.
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FAST INTERPOLATION GRIDS:   APPLFAST

➤ NNLO calculation:  O(100k) CPUh  ⇒  prohibitive in PDF  &  αs  fits!

[APPLgrid, fastNLO, NNLOJET ’19]

The Interpolation Concept

Cross section formula (integration  sum over grid nodes)
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sum: cheap!

APPLfast  -vs-  “vanilla” NNLOjet 

➤ stat. error:   —  

➤ interp. bias:

≲ 0.5 1 %

≲ 0.05 %
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TRIPLE-DIFFERENTIAL DI-JETS  HERA DATA⊕
[Jakob Stark (master thesis), Klaus Rabbertz (supervisor) '21]

5. Fits and results 5.2. Comparison between fit at NLO and NNLO

Fit �2/ndf

DIS only 1.151
µR/F = pT,1e

0.3y⇤
1.155

µR/F = m12 1.386

8 TeV NLO

Q2 = 1.9GeV2

Fit �2/ndf

DIS only 1.159
µR/F = pT,1e

0.3y⇤
1.150

µR/F = m12 1.147

8 TeV NNLO

Q2 = 1.9GeV2

Figure 5.3: Gluon PDFs of the NLO (left) and the NNLO (right) fits. The blue band
shows the fits with HERA I+II inclusive DIS data only. The yellow and orange bands
both correspond to fits including CMS 8TeV 3D dijet data but different central scale
definitions in the theory calculations. Only the experimental uncertainties are shown.

µR/F = pT,1e
0.3y⇤

µR/F = m12

8 TeV NLO

Q2 = 1.9GeV2

µR/F = pT,1e
0.3y⇤

µR/F = m12

8 TeV NNLO

Q2 = 1.9GeV2

Figure 5.4: Scale uncertainties of the Gluon PDFs of the NLO (left) and the NNLO
(right) fits. The scale uncertainties are constructed by taking the maximal envelope of
all the scale variations for a given central scale including the experimental uncertainties.
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๏ NLO  —  large differences between the two scales 

๏ NNLO  — nice agreement between the scales 

‣ gluon suppressed @ intermediate , enhanced @ high x x

pT,1e0.3y*

mjj



23

TRIPLE-DIFFERENTIAL DI-JETS —- PDF & αs
[Jakob Stark (master thesis), Klaus Rabbertz (supervisor) '21]

๏ NNLO  — as before, good agreement between scale choices

pT,1e0.3y*

mjj

5. Fits and results 5.3. Including the strong coupling constant

Fit �2/ndf ↵s

pT,1e
0.3y⇤

1.156 0.1191(15)

m12 1.386 0.1198(15)

8 TeV NLO

Q2 = 1.9GeV2

Fit �2/ndf ↵s

pT,1e
0.3y⇤

1.148 0.1155(12)

m12 1.147 0.1163(12)

8 TeV NNLO

Q2 = 1.9GeV2

Figure 5.7: Gluon PDFs corresponding to the NLO (left) and NNLO (right) fits, with
↵s included as free parameter. The bands show the increased experimental uncertainties
in comparison to Figure 5.3.

with the central scale definition of µ = pT,1e0.3y
⇤ („ptmax”) and

↵s(Mz) = 0.1198± 0.0015(exp)+0.0021
�0.0021(scale) at NLO and

↵s(Mz) = 0.1163± 0.0013(exp)+0.0010
�0.0004(scale) at NNLO

(5.5)

with the dijet mass as central scale („m12”). The experimental uncertainties are deter-
mined from the shape of the �2 function at its minimum in a similar way like the exper-
imental uncertainties on the PDFs. The scale uncertainties are taken to be the maximal
envelopes of the ↵s(Mz)-included fits upon the six scale variations described in section
4.5. The uncertainties on the ↵s values presented here must be treated with caution, as
only the experimental and scale uncertainties have been determined. Parametrization
and model uncertainties, which have not been analyzed within the scope of this work,
and remain to be investigated.

The NLO value in equation (5.4) is in good accordance to the value obtained by
Ref. [39], where the same PDF parametrization and central scale definition were used:

↵s(Mz) = 0.1194± 0.0015(exp) ± 0.0002(mod)+0.0002
�0.0004(par)+0.0031

�0.0019(scale) . (5.6)

Both the values for ↵s(Mz) at NLO in (5.4) as well as in (5.5) agree well with other
published values determined in NLO perturbative theory, like for example CMS publi-
cations of inclusive jet production (↵s(Mz) = 0.1185± 0.0019(exp)+0.0060

�0.0037(theo)) [27] or
differential 3-jet production (↵s(Mz) = 0.1171 ± 0.0013(exp)+0.0073

�0.0047(theo)) [28]. An
overview of different determinations of the strong coupling constant can be found
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5.3. Including the strong coupling constant 5. Fits and results

upper and lower end of the pT,avg range while leaving them be in the middle. The
„FlavourQCD” and „PileUpPtBB” uncertainties sources take rather large negative values
in Figure 5.6 in the NLO case. This is due to the fact, that their non-uniform impact
on the different data points permits a data shift to match the curved NLO prediction.
Especially for the predictions with µ = m12 (red in Figure 5.5) also a global shift
upwards is needed because the predictions are higher than the data in the middle of the
pT,avg range. The high positive value of the „lumi” shift is probably caused by this, as the
luminosity uncertainty has an uniform impact on all data points. The extreme outlier
values of the „nongaussiantails” uncertainty (especially in the NLO fit with µ = m12

could not be tracked down to a simple explanation. The non-Gaussian tails in the jet
energy resolution have the most impact in the outer rapidity bins [40], where there is
more discrepancy between measured data and the predictions. This may be a possible
explanation for the high value of the „nongaussiantails” shift.

Figure 5.6 also shows the sum of squared shifts for each fit. Except for the NLO fit
with the dijet mass as central scale definition, all these values also turn out to be below
the expected value of 28, which like for the HERA data could be a hint for uncertainty
overestimation.

Overall the essential finding here is the following: While the fits with NLO theory
predictions work and yield reasonable results if looking separately at each of the fits,
there is a large discrepancy between the two different central scale definitions, that are
used in the theory calculation. If the NNLO contributions are added to the calculations,
the differences in the results decrease drastically, while at the same time the scale
uncertainties get smaller. It seems, that the NNLO contribution is crucial to get scale
independent and consistent results in PDF fits to triple-differential dijet data.

5.3 Including the strong coupling constant

In the fits in Sections 5.1 and 5.2 a fixed value of ↵s(Mz) = 0.1180 was used. However
the strong coupling constant, just like the PDFs, is also a quantity, that has to be
determined from data. In fact, there is a strong correlation between the gluon PDF
and the value of the strong coupling. Fitting PDFs with a fixed value of ↵s puts an
additional constraint on the fits. The xFitter framework allows to include ↵s(Mz) as
a free parameter into the PDF fits and the results of such fits will be studied in the
following. Again, fits are performed at NLO and NNLO and with both available central
scale definitions in the FastNLO tables.

Figure 5.7 shows the gluon PDF shapes, as well as the �2 and fitted ↵s(Mz) values.
The essential finding from Section 5.2, that the fits with different central scale definitions
are more consistent in NNLO, can be found in the fits with free ↵s as well. The best-
fitting values of the strong coupling constant are found to be

↵s(Mz) = 0.1191± 0.0015(exp)+0.0028
�0.0016(scale) at NLO and

↵s(Mz) = 0.1155± 0.0012(exp)+0.0008
�0.0017(scale) at NNLO

(5.4)
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Figure 5.7: Gluon PDFs corresponding to the NLO (left) and NNLO (right) fits, with
↵s included as free parameter. The bands show the increased experimental uncertainties
in comparison to Figure 5.3.
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�0.0021(scale) at NLO and
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with the dijet mass as central scale („m12”). The experimental uncertainties are deter-
mined from the shape of the �2 function at its minimum in a similar way like the exper-
imental uncertainties on the PDFs. The scale uncertainties are taken to be the maximal
envelopes of the ↵s(Mz)-included fits upon the six scale variations described in section
4.5. The uncertainties on the ↵s values presented here must be treated with caution, as
only the experimental and scale uncertainties have been determined. Parametrization
and model uncertainties, which have not been analyzed within the scope of this work,
and remain to be investigated.

The NLO value in equation (5.4) is in good accordance to the value obtained by
Ref. [39], where the same PDF parametrization and central scale definition were used:

↵s(Mz) = 0.1194± 0.0015(exp) ± 0.0002(mod)+0.0002
�0.0004(par)+0.0031

�0.0019(scale) . (5.6)

Both the values for ↵s(Mz) at NLO in (5.4) as well as in (5.5) agree well with other
published values determined in NLO perturbative theory, like for example CMS publi-
cations of inclusive jet production (↵s(Mz) = 0.1185± 0.0019(exp)+0.0060

�0.0037(theo)) [27] or
differential 3-jet production (↵s(Mz) = 0.1171 ± 0.0013(exp)+0.0073

�0.0047(theo)) [28]. An
overview of different determinations of the strong coupling constant can be found
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JET DATA IN A GLOBAL PDF FIT
[NNLOJET + NNPDF ’20]

๏ main impact on gluon PDFs  (reduced uncertainties) 

‣ suppressed @     enhanced @  

๏ qualitatively similar effect  —  incl. jets v.s. di-jets 

‣ di-jets: stronger pull, better pert. behaviour, (slightly) better fit 

๏ no deterioration of other data

0.01 ≲ x ≲ 0.1 0.1 ≲ x ≲ 0.4

Figure 4.12. Same as Fig. 4.2, but now comparing the fits with all single-inclusive jet data (#janw), and
that with all dijet data (#danw) and highest theory accuracy (NNLO QCD+ EW) and default settings.
In the gluon comparison (right) results are displayed as a ratio to the baseline with no jet data included
(also shown for reference).

Figure 4.13. Same as Fig. 4.3, but now comparing the baseline (#bn) to the fits with all single-inclusive
jet (#janw) and dijet data (#danw) of Fig. 4.12. All results are shown as a ratio to the CT18 fit (also
shown for reference).

the dijet data with the rest of the global dataset. Interestingly, when fitting dijet data no clear
improvement in the fit quality of single-inclusive jet data (not fitted) is seen when going from
NLO to NNLO . Inclusion of EW corrections has no significant e↵ect on fit quality.

We conclude that for dijets NNLO corrections have a significant impact on both fit quality,
the central value of the gluon PDF and its uncertainty, with a clear pattern of improvement
when going from NLO to NNLO.

4.4 Single-inclusive jets vs. dijets: a comparative assessment

Having assessed the impact on PDFs of jet and dijet datasets separately, we now assess them
comparatively, in terms of perturbative stability, fit quality, and impact on PDFs. Specifically,
we compare directly PDFs obtained in fits to all single-inclusive (#janw) and dijet (#danw)
datasets with the most accurate NNLO+EW theory and default settings in Figs. 4.12-4.13,
where the baseline fit (with no jet data) and, in the latter case, the CT18 PDF fit [22] are also
shown for reference. Also, in Fig. 4.14-4.15 we compare to a representative set of datapoints
from each of the single-inclusive jet and dijet datasets predictions obtained using PDFs from
the baseline fit, the fit with single-inclusive jets, and the fit with dijets. Predictions are shown
as a ratio to the experimental data, which are shown either with full uncertainties, or with
uncorrelated uncertainties only, with the correlated uncertainties kept into account as a shift of
the datapoint (see e.g. Eqs. (85-86) of Ref. [5]).

Based on the �2 values from Tables 4.2-4.3 and the PDF comparisons in Figs. 4.12-4.15, our
conclusions are the following.

1. Concerning the relative impact on PDFs of single-inclusive jets and dijets:

23
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CONCLUSIONS

➤ precision for jet observables  

  crucial in the full exploitation of the (HL-)LHC 

  jets @ NNLO  (2 calcs)  &  recently   

➤ inclusive jets  &  di-jets  closely related but can exhibit different features 

❖ both generally well behaved for larger , but for smaller cone sizes… 

❖ inclusive jets  —  R/V mismatch, scale ambiguities, IR sensitivity, … 

❖ di-jets  —  plagued with issues at NLO but very robust at NNLO 

➤ jet data provides genuine new information to fits 
❖ mutually compatible as well as with other global data 

❖ shift & reduced uncertainties of gluon distribution

↪

↭ pp → 3 jets

R

[Czakon, Mitov, Poncelet '21]
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TWO CALCULATIONS!

➤ excellent agreement 

➤ sub-leading colour negligible                       
(missing in NNLOJET)
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Figure 3. Comparison of the cross section ratios depicted in Fig. 2 as obtained with NNLOjet
[23] (red line with scale variation error, leading-color approximation for channels involving quarks) and
with Stripper (black points with Monte Carlo integration error bars, as given in Appendix D, exact in
color). This figure has been obtained from Fig. 21 of [23] by removing the experimental data points as
well as the scale variation band of the NLO calculation, followed by superimposing the results obtained
in the present work.
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Figure 3. Comparison of the cross section ratios depicted in Fig. 2 as obtained with NNLOjet
[23] (red line with scale variation error, leading-color approximation for channels involving quarks) and
with Stripper (black points with Monte Carlo integration error bars, as given in Appendix D, exact in
color). This figure has been obtained from Fig. 21 of [23] by removing the experimental data points as
well as the scale variation band of the NLO calculation, followed by superimposing the results obtained
in the present work.
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ANTENNA SUBTRACTION —- BUILDING BLOCKS�ȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣ ࢕ ŷʞǩȋƌǩȣǊ ŷȋȴƁȅɻ

! X(. . .) ŷŒɻƟƌ ȴȣ ɠǞˈɻǩƁŒȋ ȝŒʉɫǩˇ ƟȋƟȝƟȣʉɻ X =

qq̄︷ ︸︸ ︷
A, B, Cࡪ

q;︷ ︸︸ ︷
D, Eࡪ

;;︷ ︸︸ ︷
F, G, H

X0
3 (i, j, k) =

|A0
3(i, j, k)|2

|A0
2(Ĩ , K̃)|2

, X0
4 (i, j, k, l) =

|A0
4(i, j, k, l)|2

|A0
2(Ĩ , L̃)|2

,

X1
3 (i, j, k) =

|A1
3(i, j, k)|2

|A0
2(Ĩ , K̃)|2

−X0
3 (i, j, k)

|A1
2(Ĩ , K̃)|2

|A0
2(Ĩ , K̃)|2

,

A0
3(iq, j;, kq̄) =

∣∣∣∣∣
�⇤ iq

kq̄

jg

∣∣∣∣∣

2 / ∣∣∣∣∣
�⇤ Iq

Kq̄

∣∣∣∣∣

2

! ǩȣʉƟǊɫŒʉǩȣǊ ʉǞƟ ŒȣʉƟȣȣŒƟ ←→ ɠǞŒɻƟ࢙ɻɠŒƁƟ ǇŒƁʉȴɫǩ˔Œʉǩȴȣ

/Φm+1(. . . , pi, pj , pk, . . .)

= /Φm(. . . , p̃I , p̃K , . . .) /ΦXijk (pi, pj , pk; p̃I + p̃K)

X 0,1
3 (i, j, k) =

∫
/ΦXijkX

0,1
3 (i, j, k), X 0

4 (i, j, k, l) =

∫
/ΦXijklX

0
4 (i, j, k, l)
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ANTENNA SUBTRACTION —- BUILDING BLOCKS�ȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣ ࢕ ŷʞǩȋƌǩȣǊ ŷȋȴƁȅɻ

! X(. . .) ŷŒɻƟƌ ȴȣ ɠǞˈɻǩƁŒȋ ȝŒʉɫǩˇ ƟȋƟȝƟȣʉɻ X =

qq̄︷ ︸︸ ︷
A, B, Cࡪ

q;︷ ︸︸ ︷
D, Eࡪ

;;︷ ︸︸ ︷
F, G, H

X0
3 (i, j, k) =

|A0
3(i, j, k)|2

|A0
2(Ĩ , K̃)|2

, X0
4 (i, j, k, l) =

|A0
4(i, j, k, l)|2

|A0
2(Ĩ , L̃)|2

,

X1
3 (i, j, k) =

|A1
3(i, j, k)|2

|A0
2(Ĩ , K̃)|2

−X0
3 (i, j, k)

|A1
2(Ĩ , K̃)|2

|A0
2(Ĩ , K̃)|2

,

A0
3(iq, j;, kq̄) =

∣∣∣∣∣
�⇤ iq

kq̄

jg

∣∣∣∣∣

2 / ∣∣∣∣∣
�⇤ Iq

Kq̄

∣∣∣∣∣

2

! ǩȣʉƟǊɫŒʉǩȣǊ ʉǞƟ ŒȣʉƟȣȣŒƟ ←→ ɠǞŒɻƟ࢙ɻɠŒƁƟ ǇŒƁʉȴɫǩ˔Œʉǩȴȣ

/Φm+1(. . . , pi, pj , pk, . . .)

= /Φm(. . . , p̃I , p̃K , . . .) /ΦXijk (pi, pj , pk; p̃I + p̃K)

X 0,1
3 (i, j, k) =

∫
/ΦXijkX

0,1
3 (i, j, k), X 0

4 (i, j, k, l) =

∫
/ΦXijklX

0
4 (i, j, k, l)

�ȋȋ ŷʞǩȋƌǩȣǊ ŷȋȴƁȅɻ ȅȣȴʿȣ࡭

X0
3 ࡪ X0

4 ࡪ X1
3 Œȣƌ ǩȣʉƟǊɫŒʉƟƌ ƁȴʞȣʉƟɫɠŒɫʉɻ X 0

3 ࡪ X 0
4 ࡪ X 1

3

∀ Ɓȴȣ˨ǊʞɫŒʉǩȴȣɻ ɫƟȋƟʻŒȣʉ Œʉ ǞŒƌɫȴȣ ƁȴȋȋǩƌƟɫɻࡩ

↪→ ˨ȣŒȋ࢖˨ȣŒȋ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ 2+2−
5Ɵ࢙cƟǞɫȝŒȣȣࢁ æǩƌƌƟɫࡪ cƟǞɫȝŒȣȣࡪ cȋȴʻƟɫ ࢂࠌࠇࢪ

↪→ ǩȣǩʉǩŒȋ࢖˨ȣŒȋ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ 2+T
ࡪ5ŒȋƟȴࢁ cƟǞɫȝŒȣȣ5࢙Ɵ æǩƌƌƟɫࡪ cƟǞɫȝŒȣȣࡪ �ʞǩɻȴȣǩࡪ �ŒǩʉɫƟ ࢂࠉࠈࢪࡪࠐࠇࢪࡪࠍࠇࢪ

↪→ ǩȣǩʉǩŒȋ࢖ǩȣǩʉǩŒȋ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ ࡱ TT
ࡪȴʞǊǞƟ˔Œȋ#ࢁ 5ŒȋƟȴࡪ cƟǞɫȝŒȣȣ5࢙Ɵ æǩƌƌƟɫࡪ cƟǞɫȝŒȣȣࡪ �ŒǩʉɫƟࡪ Ɵʉ Œȋࡱ ࢂࠉࠈࢪࡪࠈࠈࢪࡪࠇࠈࢪ
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ANTENNA SUBTRACTION @ NLO  —-  qq̄ → ggZ�ȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣ ॸ £�´ ࢕ DˇŒȝɠȋƟࡩ q q̄ → ; ; w

d�̂T ⇠ J (1)
n M0

n

d�̂S ⇠ X0
3M

0
n

d�̂T :

d�̂S :

1

∫ {
/σ_

w+1D2i − /σa
w+1D2i

}

=

∫
/Φw+2

{ ∣∣A0
4(1q , 3;, 4;, 2q̄ ,w)

∣∣2 J (Φw+2)

− d03(1q , 3;, 4;)
∣∣A0

3(1̃q , (̃34);, 2q̄ ,w)
∣∣2 J (Φ̃w+1)

− d03(2q̄ , 4;, 3;)
∣∣A0

3(1q , (̃34);, 2̃q̄ ,w)
∣∣2 J (Φ̃w+1)

}
+ (3 ↔ 4)

∫ {
/σo

w+1D2i − /σh
w+1D2i

}

=

∫
/Φw+1

{ ∣∣A1
3(1q , 3;, 2q̄ ,w)

∣∣2

+
1

2

[
D0

3(s13) +D0
3(s23)

] ∣∣A0
3(1q , 3;, 2q̄ ,w)

∣∣2
}

J (Φw+1)
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ANTENNA SUBTRACTION @ NNLO�ȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣ ॸ ££�´

ࡱ�ࢁ +ʞɫɫǩƟ ࡪ Dࡱīࡱ£ࡱ cȋȴʻƟɫࡪ ðࡱ īƟȋȋɻ ࢂࠊࠈࢪ

d�̂U,A⇠ ��0

✏ J
(1)
n M1

n + J (1)
n M1

n d�̂U,B ⇠ 1
2J

(1)
n ⌦ J (1)

n M0
n d�̂U,C ⇠ J (2)

n M0
n

d�̂T,b1 ⇠ X0
3M

1
n + X0

3J
(1)
n M0

n

d�̂T,b3 ⇠ ��0

✏ X
0
3M

0
n + �0

✏ X
0
3

⇣
|s|
µ2

⌘�✏
M0

n d�̂T,c ⇠ �
Z

1
d�̂S,c + d�̂T,c1 + d�̂T,c2

d�̂T,a ⇠ J (1)
n+1M

0
n+1 d�̂T,b2 ⇠ X1

3M
0
n + J (1)

X X0
3M

0
n � MXX0

3J
(1)
2 M0

n

d�̂S,a d�̂S,b2d�̂S,c d�̂S,b1d�̂S,d

d�̂U :

d�̂T :

d�̂S :

! ƌȴʞŷȋƟ ɫƟŒȋࡩ /σa ∼ X0
3 |A0

m+1|2, X0
4 |A0

m|2, X0
3 X0

3 |A0
m|2

! ɫƟŒȋ࢖ʻǩɫʉʞŒȋࡩ /σh ∼ X 0
3 |A0

m+1|2, X0
3 |A1

m|2, X1
3 |A0

m|2

! ƌȴʞŷȋƟ ʻǩɫʉʞŒȋࡩ /σl = ƁȴȋȋƟƁʉࢍ ɫƟɻʉࢎ ∼ X |A0,1
m |2
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ANTENNA SUBTRACTION  —-  CHECKS OF THE CALCULATION�ȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣ ࢕ +ǞƟƁȅɻ ȴǇ ʉǞƟ ƁŒȋƁʞȋŒʉǩȴȣ

�ȣŒȋˈʉǩƁ ɠȴȋƟ ƁŒȣƁƟȋȋŒʉǩȴȣ
! ßȴȋƟɻ

(
/σ_o − /σh

)
= 0

! ßȴȋƟɻ
(

/σoo − /σl
)
= 0

5ǩȝæƟǊࡩ D = 4 − 2ε

ċȣɫƟɻȴȋʻƟƌ ȋǩȝǩʉɻ
! /σa → /σ__ ࢙ɻǩȣǊȋƟࢍ ॹ ƌȴʞŷȋƟ࢙ʞȣɫƟɻȴȋʻƟƌࢎ
! /σh → /σ_o ࢎʞȣɫƟɻȴȋʻƟƌ࢙ɻǩȣǊȋƟࢍ

ŷǩȣ ʉǞƟ ɫŒʉǩȴࡩ /σa//σ__ ʞȣɫƟɻȴȋʻƟƌ−−−−−−→ 1

q q̄ → w + ;3 ;4 ;5 3;ࢍ ɻȴǇʉ ॹ ;4 ‖ q̄ࢎ

 0

 200

 400

 600

 800

 1000

 0.9999  0.99992  0.99994  0.99996  0.99998  1  1.00002  1.00004  1.00006  1.00008  1.0001

    1 outside the plot (   0,   0) 
    0 outside the plot (   0,   0) 
    0 outside the plot (   0,   0) 

#phase space points =  1000

Soft collinear - 3, 2/4

x=10-7

x=10-8

x=10-9

ŒɠɠɫȴŒƁǞࢍ ɻǩȣǊʞȋŒɫ ȋǩȝǩʉࡩ xi = 10−7, 10−8, ࢎ10−9
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WHAT ABOUT ANGULAR TERMS?! īǞŒʉ Œŷȴʞʉ ŒȣǊʞȋŒɫ ʉƟɫȝɻࡲ

! �ȣʉƟȣȣŒ ɻʞŷʉɫŒƁʉǩȴȣࡩ Xl
n |Am|2 ↔ ɻɠǩȣ ŒʻƟɫŒǊƟƌ࡭

! ŒȣǊʞȋŒɫ ʉƟɫȝɻ ǩȣ Ǌȋʞȴȣ ɻɠȋǩʉʉǩȣǊɻࡩ

P;→qq̄ =
2
sij

[
−gµν + 4z(1− z)

kµ
⊥k

ν
⊥

k2
⊥

]

↪→ ɻʞŷʉɫŒƁʉǩȴȣ ȣȴȣ࢙ȋȴƁŒȋ ǩȣ ʉǞƟɻƟ ȋǩȝǩʉɻ࡭
↪→ ʻŒȣǩɻǞ ʞɠȴȣ Œ˔ǩȝʞʉǞŒȋ࢙ŒȣǊȋƟ ࢎϕࢍ ŒʻƟɫŒǊƟ ⇒ࢍ ƌȴ ȣȴʉ ƟȣʉƟɫ X ࢎ

ɻȴȋࡱ ࡩࠈ ɻʞɠɠȋƟȝƟȣʉ ŒȣǊʞȋŒɫ ʉƟɫȝɻ ǩȣ ʉǞƟ ɻʞŷʉɫŒƁʉǩȴȣ
ɻȴȋࡱ ࡩࠉ Ɵˇɠȋȴǩʉ ϕ ƌƟɠƟȣƌƟȣƁƟ ॹ ŒʻƟɫŒǊƟ ǩȣ ʉǞƟ ɠǞŒɻƟ ɻɠŒƁƟ

A∗
µ
kµ
⊥k

ν
⊥

k2
⊥

Aν ∼ +Qb(2ϕ+ ϕ0)

⇒ Œƌƌ ϕ ॹ (ϕ+π/2)࡭

He.¥#÷g#|.
$r −→ ßðǊƟȣࡱ −→

[
{pi, pj , . . .}
{p′i, p′j , . . .}

]
(i‖j)−−−→

[ {pϕi , pϕj , . . .}
{pϕ+π/2

i , pϕ+π/2
j , . . .}

]


