
# **Loop-Tree Duality** and higher-orders.



**Deutsches Elektronen-Synchrotron DESY** 

and methods in precision physics" Cadenabbia (Italy) - 30.07.2021







## Index



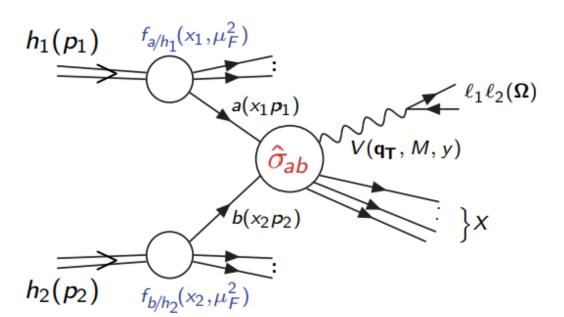
- Motivation
- Loop-Tree Duality
  - A. Brief history of LTD-based methods
  - B. Nested residues
  - C. Causality at integrand level
  - D. Geometry and causality
  - E. Quantum algorithms for causal reconstruction
- Conclusions

## LTD team

- G. Rodrigo, J. J. Aguilera-Verdugo,
- F. Driencourt-Mangin, J. Plenter, N.
- S. Ramírez-Uribe, A. Rentería-Olivo,
- L. Vale Silva (IFIC)
- R. J. Hernández-Pinto (*UAS*)
- J. Ronca, F. Tramontano (*INFN*)
- G. Sborlini (*DESY*)
- W. J. Torres Bobadilla (*MPI*)



## **Motivation**




- What we need to calculate? Cross-sections and production/decay rates at colliders
- How to calculate? Use the parton model and SM (or other QFT...)

$$\frac{d\sigma}{d^2\vec{q}_T dM^2 d\Omega dy} = \sum_{a,b} \int dx_1 dx_2 f_a^{h_1}(x_1) f_b^{h_2}(x_2) \frac{d\hat{\sigma}_{ab\to V+X}}{d^2\vec{q}_T dM^2 d\Omega dy}$$

PDFs (non-perturbative)

Partonic cross-section (perturbative)



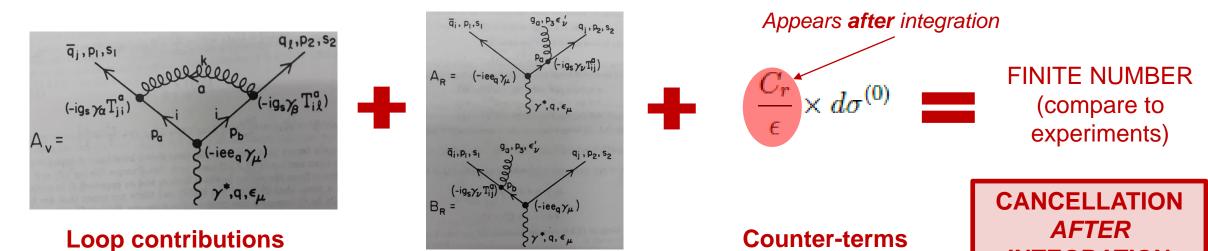
- Intermediate steps contain mathematical issues
- Need for regularization DREG
- It changes the number of space-time dimensions in order to achieve integrability

$$\mathcal{O}_d[F] = \int d^d \mathbf{x} \, F(\mathbf{x}) \qquad d = 4 - 2\varepsilon$$

## **Motivation**



#### Parton Distribution Functions:


- Extracted from data (fits, neural networks, etc)
- Scale dependence determined by DGLAP equations (perturbative kernels)
- Several PDFs sets available in the market (different datasets, models, approximations, etc)

Real corrections

(additional particles)

#### Partonic Cross Sections:

- Directly obtained from QFT (applying perturbative methods)
- Several ingredients required (for higher-orders)



(fix the problems

of the other two)

(quantum fluctuations of

vacuum)

INTEGRATION

## **Motivation**



- Loop amplitudes are a bottleneck in current high-precision computations
- Presence of **singularities and thresholds** prevents direct numerical implementations
- Well-known theorems (KLN) guarantee the cancellation of singularities for physical observables
- **Real-radiation** contributions are defined in **Euclidean space** (i.e. phase-space integrals)

#### LOOP **AMPLITUDES**

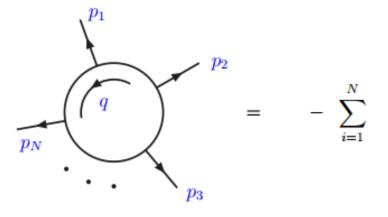
- Virtual internal momenta
- Defined in Minkowski space-time

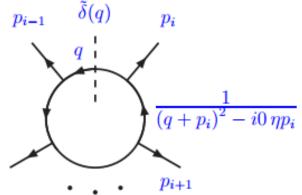


**Loop-Tree Duality** 



#### DUAL **AMPLITUDES**


- On-shell cut momenta
- Defined in Euclidean space-time


To be combined



**REAL** CONTRIBUTIONS (AND ISR/UV **COUNTER-TERMS**)

Graphical representation of one-loop opening into trees (original idea by Catani et al '08)







## Foundational paper: a new way to decompose loop amplitudes

H

Н

N

00

0



Published by Institute of Physics Publishing for SISSA

Received: May 6, 2008
Revised: August 14, 2008
Accepted: August 26, 2008
Published: September 11, 2008

#### From loops to trees by-passing Feynman's theorem

#### Stefano Catani

INFN, Sezione di Firenze and Dipartimento di Fisica, Università di Firenze, I-50019 Sesto Fiorentino, Florence, Italy E-mail: stefano.catani@fi.infn.it

#### Tanju Gleisberg

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, U.S.A.
E-mail: tanju@slac.stanford.edu

#### Frank Krauss

 $Institute\ for\ Particle\ Physics\ Phenomenology,\ Durham\ University,\\ Durham\ DH1\ 3LE,\ U.K.$ 

E-mail: frank.krauss@durham.ac.uk

#### Germán Rodrigo

Instituto de Física Corpuscular, CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia, Spain E-mail: german.rodrigo@ific.uv.es

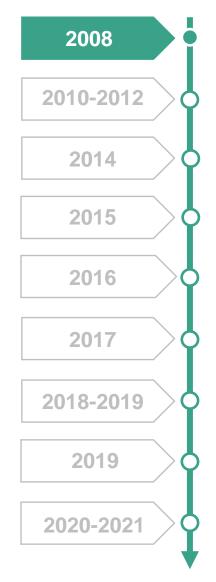
#### Jan-Christopher Winter

Fermi National Accelerator Laboratory, Batavia, IL 60510, U.S.A. E-mail: jwinter@fnal.gov

ABSTRACT: We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. We discuss in detail the duality that relates one-loop and tree-level Green's functions. We comment on applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluation of cross-sections at next-to-leading order.

 Application of Cauchy theorem taking care of Feynman prescription: leads to a new prescription!

## Feynman integral


$$L^{(1)}(p_1, \dots, p_N) = \int_{\ell} \prod_{i=1}^{N} G_F(q_i) = \int_{\ell} \prod_{i=1}^{N} \frac{1}{q_i^2 - m_i^2 + i0}$$



$$L^{(1)}(p_1, \dots, p_N) = -\sum_{i=1}^N \int_{\ell} \tilde{\delta}(q_i) \prod_{j=1, j \neq i}^N G_D(q_i; q_j)$$

## **Dual integral**

#### JHEP 09 (2008) 065



- Extension to more general amplitudes, including possible local UV counter-terms
- Two-loop formula (2010)

$$L^{(2)}(p_1,p_2,\ldots,p_N)$$
 Uses only double-cuts! 
$$=\int_{\ell_1}\int_{\ell_2}\left\{-G_D(\alpha_1)\,G_F(\alpha_2)\,G_D(\alpha_3)+G_D(\alpha_1)G_D(\alpha_2\cup\alpha_3)+G_D(\alpha_3)G_D(-\alpha_1\cup\alpha_2)\right\}$$

Formalism for dealing with higher-order poles (2012)



Published for SISSA by 
Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA by Published For SISSA b

RECEIVED: July 22, 2010
ACCEPTED: September 19, 2010
PUBLISHED: October 20, 2010

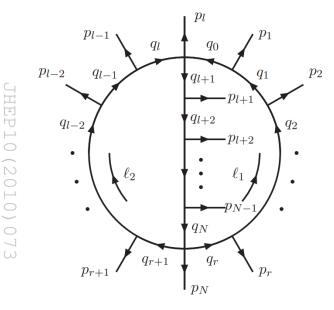
#### A tree-loop duality relation at two loops and beyond

Isabella Bierenbaum, $^a$  Stefano Catani, $^b$  Petros Draggiotis $^a$  and Germán Rodrigo $^a$ 

<sup>a</sup>Instituto de Física Corpuscular,

Universitat de València - Consejo Superior de Investigaciones Científicas, Apartado de Correos 22085, E-46071 Valencia, Spain

<sup>b</sup>INFN, Sezione di Firenze and Dipartimento di Fisica, Università di Firenze,


I-50019 Sesto Fiorentino, Florence, Italy

 $\label{eq:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:email:$ 

ABSTRACT: The duality relation between one-loop integrals and phase-space integrals, developed in a previous work, is extended to higher-order loops. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators, which compensates for the absence of the multiple-cut contributions that appear in the Feynman tree theorem. We rederive the duality theorem at one-loop order in a form that is more suitable for its iterative extension to higher-loop orders. We explicitly show its application to two- and three-loop scalar master integrals, and we discuss the structure of the occurring cuts and the ensuing results in detail.

Keywords: NLO Computations, QCD

ARXIV EPRINT: 1007.0194



HEP

Published for SISSA by ② Springer

RECEIVED: November 29, 2012 Accepted: February 13, 2013 Published: March 5, 2013

#### Tree-loop duality relation beyond single poles

#### Isabella Bierenbaum, <sup>a</sup> Sebastian Buchta, <sup>b</sup> Petros Draggiotis, <sup>b</sup> Ioannis Malamos <sup>b</sup> and Germán Rodrigo <sup>b</sup>

<sup>a</sup> II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany

<sup>b</sup>Instituto de Física Corpuscular, Universitat de València, Consejo Superior de Investigaciones Científicas, Parc Científic, E-46980 Paterna (Valencia), Spain

E-mail: isabella.bierenbaum@desy.de, sbuchta@ific.uv.es, petros.drangiotis@ific.uv.es, ioannis.malamos@ific.uv.es,

german.rodrigo@ific.uv.es

ABSTRACT: We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multi-loop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.

Keywords: QCD Phenomenology, NLO Computations

ARXIV EPRINT: 1211.5048

## JHEP 10 (2010) 073 JHEP 03 (2013) 025

2008

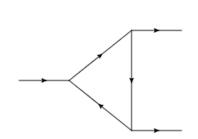
2010-2012

2014

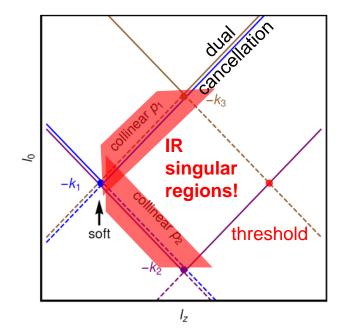
2015

2016

2017


2018-2019

2019


2020-2021

DESY.

- Analysis of singular structures of loop amplitudes in LTD representation
- First clues for real-dual integrand level combination



Analysis of singularities in triangles



### 

Published for SISSA by 2 Springer

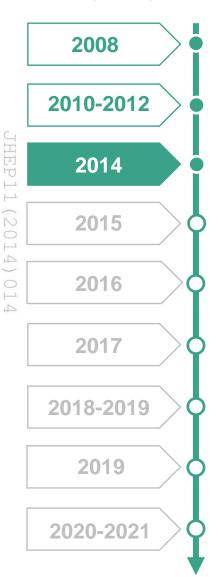
RECEIVED: July 18, 2014 REVISED: October 7, 2014 ACCEPTED: October 21, 2014 PUBLISHED: November 5, 2014

## On the singular behaviour of scattering amplitudes in quantum field theory

Sebastian Buchta, Grigorios Chachamis, Petros Draggiotis, Ioannis Malamos and Germán Rodrigo

- <sup>a</sup>Instituto de F\(\text{isia Corpuscular}\), Universitat de Val\(\text{eria}\) = Consejo Superior de Investigaciones Cient\(\text{ficas}\), Parc Cient\(\text{fic}\), E-46980 Paterna, Valencia, Spain
- b Institute of Nuclear and Particle Physics, NCSR "Demokritos", Agia Paraskevi, 15310, Greece

E-mail: sbuchta@ific.uv.es, grigorios.chachamis@ific.uv.es, petros.draggiotis@gmail.com, ioannis.malamos@ific.uv.es, german.rodrigo@csic.es


ABSTRACT: We analyse the singular behaviour of one-loop integrals and scattering amplitudes in the framework of the loop-tree duality approach. We show that there is a partial cancellation of singularities at the loop integrand level among the different components of the corresponding dual representation that can be interpreted in terms of causality. The remaining threshold and infrared singularities are restricted to a finite region of the loop momentum space, which is of the size of the external momenta and can be mapped to the phase-space of real corrections to cancel the soft and collinear divergences.

Keywords: QCD Phenomenology, NLO Computations

ARXIV EPRINT: 1405.7850

- Forward (backward) on-shell hyperboloids associated with positive (negative) energy solutions
- Forward-backward intersections are physical divergences; FF cancel among them

#### JHEP 11 (2014) 014



DESY.

- Towards the computation of physical observables in four space-time dimensions
- Tested on toy scalar model; local cancellation of IR divergences

JHEP



Published for SISSA by Springer

RECEIVED: September 2, 2015
REVISED: December 6, 2015
ACCEPTED: January 15, 2016
PUBLISHED: February 5, 2016

#### Towards gauge theories in four dimensions

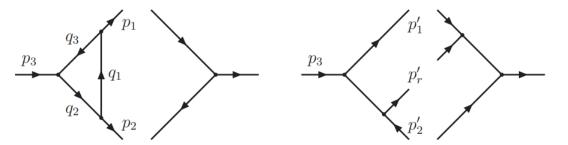
Roger J. Hernández-Pinto,<sup>a</sup> Germán F.R. Sborlini<sup>a,b</sup> and Germán Rodrigo<sup>a</sup>

<sup>a</sup>Instituto de Física Corpuscular.

Universitat de València - Consejo Superior de Investigaciones Científicas,

Parc Científic, E-46980 Paterna, Valencia, Spain

b Departamento de Física and IFIBA, FCEyN, Universidad de Buenos Aires, Pabellón 1 Ciudad Universitaria, 1428, Capital Federal, Argentina


Pabellon I Ciudad Universitaria, 1428, Capital Federal, Argentina
E-mail: rogerjose.hernandez@ific.uv.es, german.sborlini@ific.uv.es,

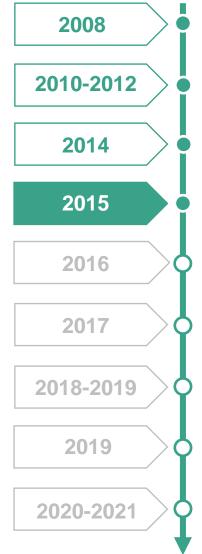
 $\label{eq:condition} E\text{-}\textit{mail}: \ \texttt{rogerjose.hernandez@ific.uv.es}, \ \texttt{german.sborlini@ific.uv.es}, \\ \texttt{german.rodrigo@csic.es}$ 

ABSTRACT: The abundance of infrared singularities in gauge theories due to unresolved emission of massless particles (soft and collinear) represents the main difficulty in perturbative calculations. They are typically regularized in dimensional regularization, and their subtraction is usually achieved independently for virtual and real corrections. In this paper, we introduce a new method based on the loop-tree duality (LTD) theorem to accomplish the summation over degenerate infrared states directly at the integrand level such that the cancellation of the infrared divergences is achieved simultaneously, and apply it to reference examples as a proof of concept. Ultraviolet divergences, which are the consequence of the point-like nature of the theory, are also reinterpreted physically in this framework. The proposed method opens the intriguing possibility of carrying out purely four-dimensional implementations of higher-order perturbative calculations at next-to-leading order (NLO) and beyond free of soft and final-state collinear subtractions.

Keywords: NLO Computations

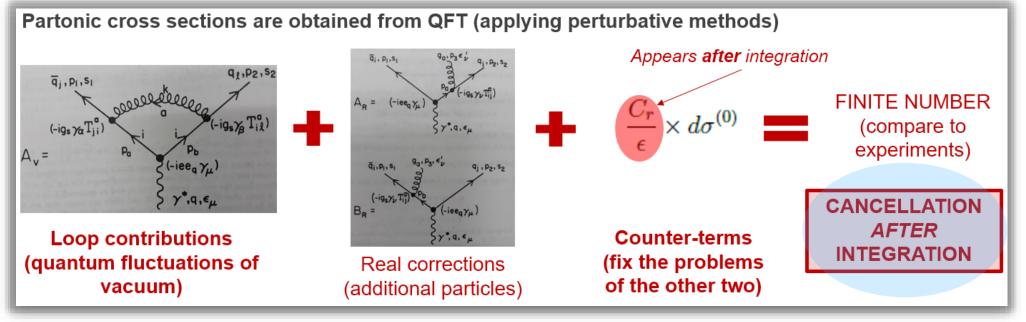
ARXIV EPRINT: 1506.04617




Introduction of real-dual mappings, to achieve a local cancellation of IR singularities!

$$p_r^{\prime \mu} = q_1^{\mu}, \qquad p_1^{\prime \mu} = -q_3^{\mu} + \alpha_1 p_2^{\mu} = p_1^{\mu} - q_1^{\mu} + \alpha_1 p_2^{\mu},$$
  
$$p_2^{\prime \mu} = (1 - \alpha_1) p_2^{\mu}, \qquad \alpha_1 = \frac{q_3^2}{2q_3 \cdot p_2},$$

- Purely four-dimensional representation of crosssections
- First study of dual UV local counter-terms:


$$I_{\text{UV}}^{\text{cnt}} = \int_{\ell} \frac{1}{(q_{\text{UV}}^2 - \mu_{\text{UV}}^2 + i0)^2}$$

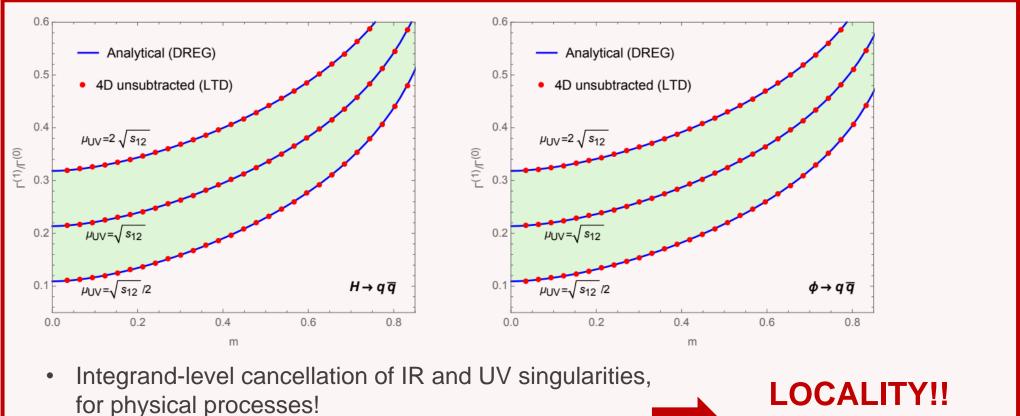
#### JHEP 02 (2016) 044



DESY.

- Towards the computation of physical observables in four space-time dimensions
- Tested on toy scalar model; local cancellation of IR divergences



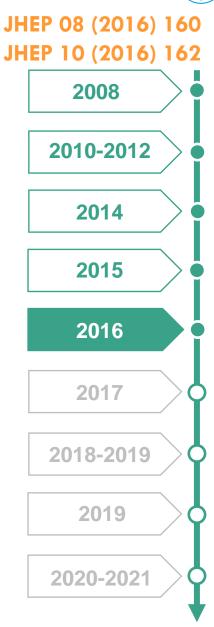

- Integrand-level cancellation of IR and UV singularities!
- No need of integrated counter-terms
- Purely four-dimensional integration (no DREG!)

#### FIRST APPROACH TO LOCAL REPRESENTATIONS!!



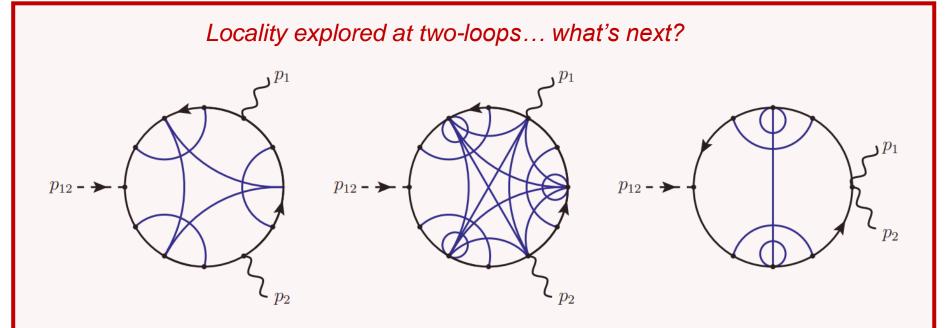
DESY.

- Development of the Four Dimensional Unsubtraction (FDU) framework @ NLO
- Ingredients for local cancellation of IR singularities
- Smooth numerical implementation (massive to massless transition)



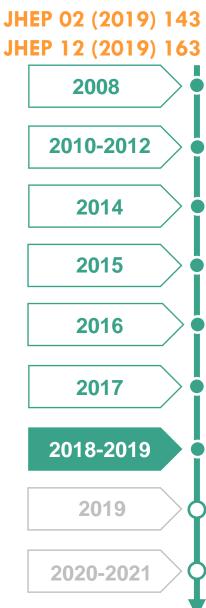

No need of integrated counter-terms (up to NLO)

Purely four-dimensional integration (**no DREG!**)


LOCALITY!!

More studies required!




DESY.

- Full analysis of Higgs decays at two-loop (inclusion of EW effects)
- First realization of local UV counter-terms at two-loop level




- New singular structures arise beyond one-loop
- More diagrams, more variables... starts to be cumbersome!
- Explore novel representations of the integrands
- Point towards fully local cancellations of IR/UV singularities

**UNDERSTANDING SINGULARITIES IS CRUCIAL!! EXPLORE THEM!!** 







arXiv:2006.112 Causal represe


Authors: J. Jesus Ag.

Torres Bobadilla

## **Nested residues: Details**

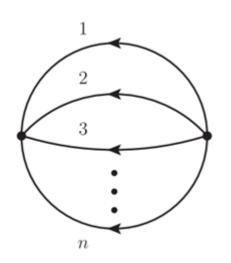
DESY.

- Starting point: multiloop Feynman integrals and scattering amplitudes
- Iterated application of the Cauchy residue theorem to remove one DOF for each loop momenta



Using this notation, we write any L-loop N-particle scattering amplitude:

$$\mathcal{A}_{N}^{(L)}(1,...,n) = \int_{\ell_{1},...,\ell_{L}} \mathcal{N}(\{\ell_{i}\}_{L},\{p_{j}\}_{N}) G_{F}(1,...,n) \qquad \text{with} \qquad G_{F}(1,...,n) = \prod_{i \in \mathbb{I} \cup \cdots \cup n} (G_{F}(q_{i}))^{a_{i}}$$


D-dimensional loop momenta (*Minkowski*)

Sets of momenta

## **Nested residues: Details**

DESY.

- Starting point: multiloop Feynman integrals and scattering amplitudes
- Iterated application of the Cauchy residue theorem to remove one DOF for each loop momenta



## Iterated application of Cauchy's theorem

Remaining sets (no residue evaluation)  $G_D(1,\ldots,r;\vec{n}) = -2\pi i \sum \mathrm{Res}(G_D(1,\ldots,r-1;\vec{r},n),\mathrm{Im}(\eta\cdot q_{i_r})<0)$ 

 $i_r \in r$ 

r<sup>th</sup> residue evaluation

Sum over all the elements of the rth set

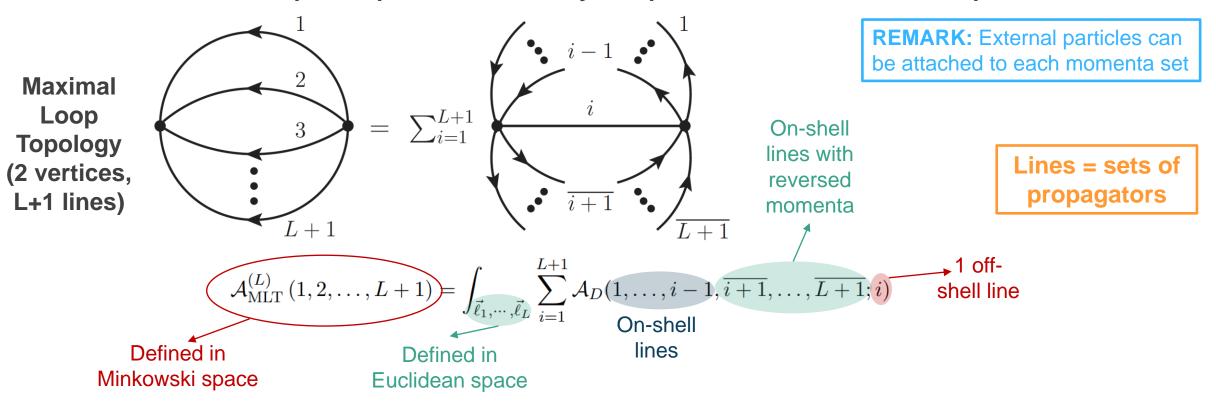
(r-1)<sup>th</sup> dual function

Depends on integration variables (q<sub>i</sub>)

Poles could be in-or-out depending on specific momenta...

## **Multiloop diagram**

- Dual representation for L-loop amplitudes is obtained after the L<sup>th</sup> residue evaluation
- Equivalent to: "Number of cuts equal number of loops"
- Sum over all possible poles is implicit: some contributions vanish inside each iteration


Iterated residues
(all the poles)

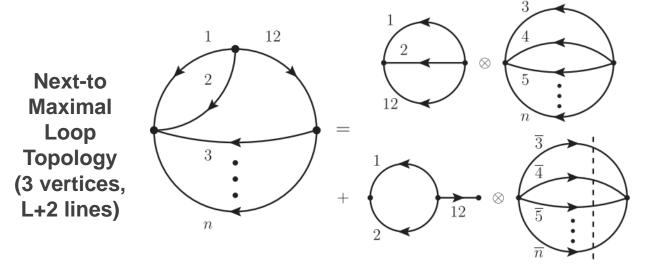
cancellations
Nested residues
(only physical ones)

## **Nested residues: Compact representations**



Cancellation of displaced poles leads to very compact formulae for the dual representation:




- We define the Maximal Loop Topology (MLT) as a building block to describe multi-loop amplitudes
- Important: "Any one and two-loop amplitude can be described by MLT topologies"

Inductive proofs of these formulae to allloop orders available in JHEP 02 (2021) 112

# **Nested residues: Compact representations**



More complicated topologies can be described by convolutions with MLT-like diagrams



$$\mathcal{A}_{\text{NMLT}}^{(L)}(1,...,n,12) = \mathcal{A}_{\text{MLT}}^{(2)}(1,2,12) \otimes \mathcal{A}_{\text{MLT}}^{(L-2)}(3,...,n)$$
$$+ \mathcal{A}_{\text{MLT}}^{(1)}(1,2) \otimes \mathcal{A}^{(0)}(12)$$
$$\otimes \mathcal{A}_{\text{MLT}}^{(L-1)}(\bar{3},...,\bar{n})$$

#### IMPORTANT FACTORIZATION FORMULAE

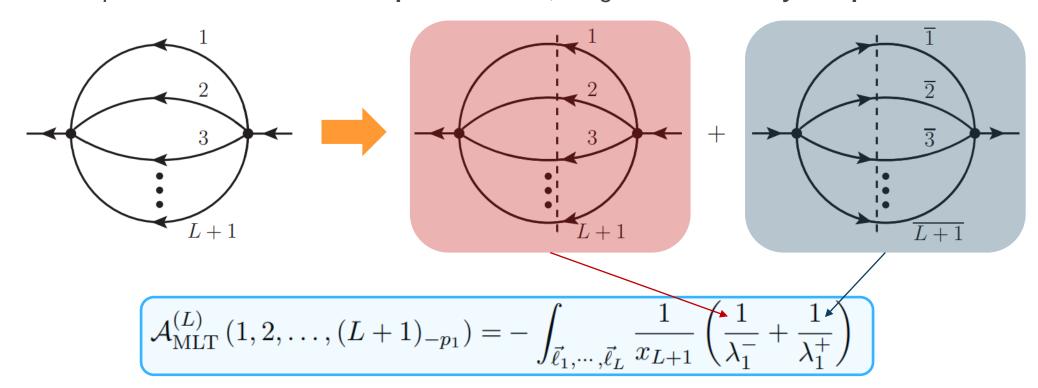
Singular and causal structure is determined by the corresponding sub-topologies

Next-to-Next-to Maximal Loop Topology (4 vertices, L+3 lines)

Next-to-
$$\frac{1}{23}$$
 $\frac{1}{2}$ 
 $\frac{1}{3}$ 
 $\frac{1}{2}$ 
 $\frac{1}{3}$ 
 $\frac{1}{2}$ 
 $\frac{1}{3}$ 
 $\frac{1}{4}$ 
 $\frac{2}{5}$ 
 $\frac{1}{6}$ 
 $\frac{1}{6}$ 

$$\mathcal{A}_{\text{NNMLT}}^{(L)}(1,...,n,12,23)$$

$$= \mathcal{A}_{\text{NMLT}}^{(3)}(1,2,3,12,23) \otimes \mathcal{A}_{\text{MLT}}^{(L-3)}(4,...,n)$$


$$+ \mathcal{A}_{\text{MLT}}^{(2)}(1 \cup 23,2,3 \cup 12) \otimes \mathcal{A}_{\text{MLT}}^{(L-2)}(\bar{4},...,\bar{n})$$

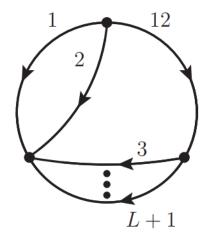
Inductive proofs of these formulae to allloop orders available in JHEP 02 (2021) 112

# Causality at integrand level



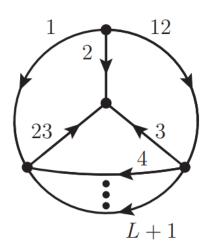
- The cancellation of displaced poles implies un-physical terms vanish in the final representation
- Moreover, there is a strict connection between aligned contributions and causal terms!!!
- *MLT example*: If we **sum over all the possible cuts**, we get this **extremely compact** result:




with

$$\lambda_1^{\pm} = \sum_{i=1}^{L+1} q_{i,0}^{(+)} \pm p_{1,0}$$
 and  $x_{L+k} = 2^{L+k} \prod_{i=1}^{L+k} q_{i,0}^{(+)}$ 

# Causality at integrand level



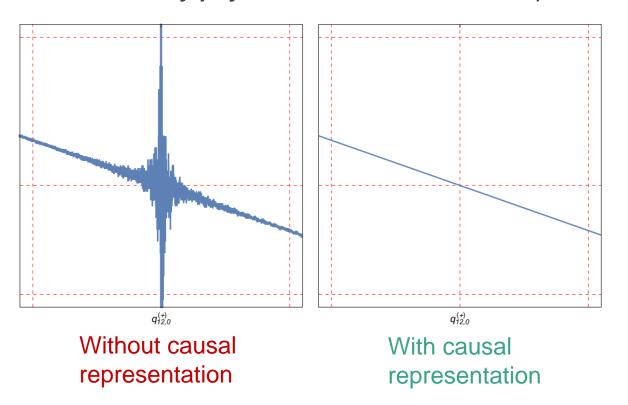

Similar formulae can be found for NMLT and NNMLT to all loop orders!

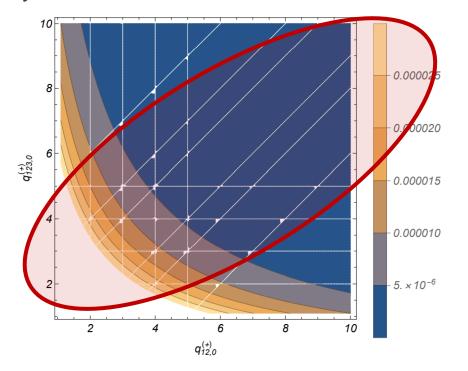


$$\mathcal{A}_{\text{NMLT}}^{(L)}(1, 2, \dots, L+2) = \int_{\vec{\ell}_1, \dots, \vec{\ell}_L} \frac{2}{x_{L+2}} \left( \frac{1}{\lambda_1 \lambda_2} + \frac{1}{\lambda_2 \lambda_3} + \frac{1}{\lambda_3 \lambda_1} \right)$$

with 
$$\lambda_1 = \sum_{i=1}^{L+1} q_{i,0}^{(+)}$$
  $\lambda_2 = q_{1,0}^{(+)} + q_{2,0}^{(+)} + q_{L+2,0}^{(+)}$   $\lambda_3 = \sum_{i=3}^{L+2} q_{i,0}^{(+)}$ 




$$\mathcal{A}_{N^{2}MLT}^{(L)}(1,2,\ldots,L+3) = -\int_{\vec{\ell}_{1},\ldots,\vec{\ell}_{L}} \frac{2}{x_{L+3}} \left[ \frac{1}{\lambda_{1}} \left( \frac{1}{\lambda_{2}} + \frac{1}{\lambda_{3}} \right) \left( \frac{1}{\lambda_{4}} + \frac{1}{\lambda_{5}} \right) + \frac{1}{\lambda_{6}} \left( \frac{1}{\lambda_{2}} + \frac{1}{\lambda_{4}} \right) \left( \frac{1}{\lambda_{3}} + \frac{1}{\lambda_{5}} \right) + \frac{1}{\lambda_{7}} \left( \frac{1}{\lambda_{2}} + \frac{1}{\lambda_{5}} \right) \left( \frac{1}{\lambda_{3}} + \frac{1}{\lambda_{4}} \right) \right]$$

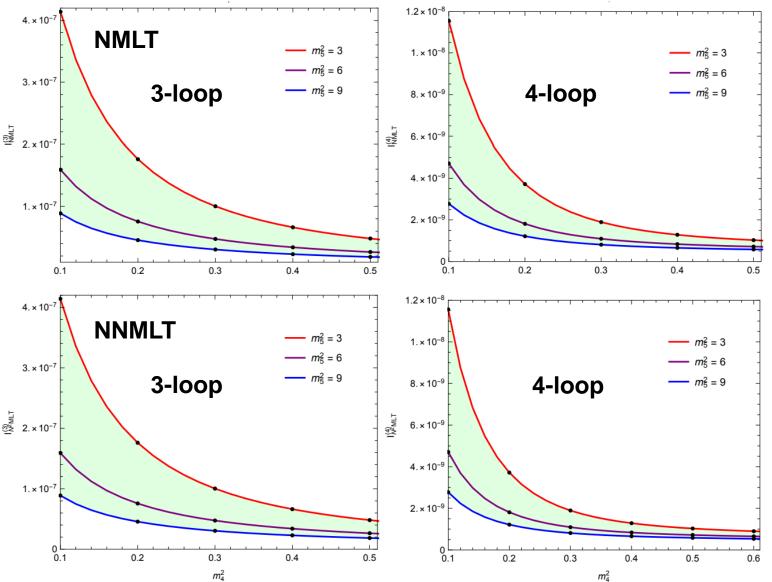

with 
$$\lambda_4 = q_{2,0}^{(+)} + q_{3,0}^{(+)} + q_{L+3,0}^{(+)} \qquad \qquad \lambda_6 = q_{1,0}^{(+)} + q_{3,0}^{(+)} + q_{L+2,0}^{(+)} + q_{L+3,0}^{(+)} \\ \lambda_5 = q_{1,0}^{(+)} + q_{L+3,0}^{(+)} + \sum_{i=4}^{L+1} q_{i,0}^{(+)} \qquad \qquad \lambda_7 = q_{2,0}^{(+)} + \sum_{i=4}^{L+3} q_{i,0}^{(+)}$$

## Causality at integrand level



- This is a Causal Representation and exists for any QFT amplitude!
- Advantages
  - 1. Causal denominators have **same-sign combinations of on-shell energies** (positive numbers), thus are **more stable numerically!**
  - 2. Only physical thresholds remain; spurious un-physical instabilities are removed!






White lines = Numerical instabilities

# Causality at integrand level: Implementation



#### Numerical results in D=4:



$$\mathcal{A}_{N^{k-1}MLT}^{(L)}(1^2, 2^2, \dots, L^2, L+1, \dots, L+k)$$

$$= \prod_{i=1}^{L} \frac{\partial}{\partial (q_{i,0}^{(+)})^2} \mathcal{A}_{N^{k-1}MLT}^{(L)} (1, 2, \dots, L+1, \dots, L+k)$$

Is also causal by construction! (derivatives preserve denominators)

Solid lines: LTD

**Dots: FIESTA** 

## Setup:

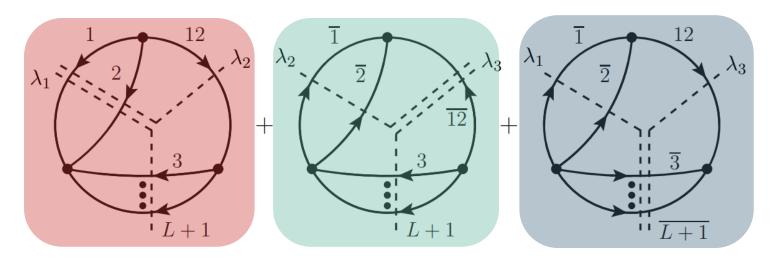
$$\mathcal{A}_{N^{k-1}MLT}^{(L)}(1^2, 2^2, \dots, L^2, L+1, \dots, L+k)$$

Mases:

$$\{1,2,\ldots,L\} \longleftrightarrow m_4^2$$

$$\{L+1,\ldots,L+k\} \longleftrightarrow m$$

.




Further studies were performed with several topological families

JHEP 01 (2021) 069, JHEP 04 (2021) 129, JHEP 04 (2021) 183, Eur.Phys.J.C 81 (2021) 6, 514

- Graphical interpretation in terms of entangled thresholds
  - 1. Each causal propagator represents a threshold of the diagram
  - 2. Each diagram contains several thresholds
  - 3. The causal representation involves products of (compatible) thresholds

Causal denominators (λ) are associated to *cut lines* in the diagrams: momenta flow must be adjusted to be compatible



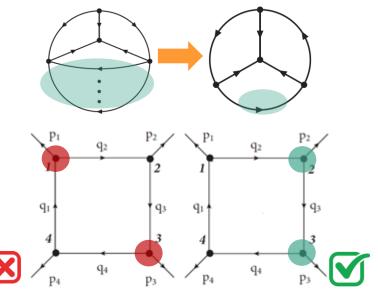
$$\mathcal{A}_{\mathrm{NMLT}}^{(L)}\left(1,2,\ldots,L+2\right) = \int_{\vec{\ell}_{1},\ldots,\vec{\ell}_{L}} \frac{2}{x_{L+2}} \left(\frac{1}{\lambda_{1}\lambda_{2}} + \frac{1}{\lambda_{2}\lambda_{3}} + \frac{1}{\lambda_{3}\lambda_{1}}\right)$$



Causal representation obtained directly after summing over all the nested residues

$$\mathcal{A}_N^{(L)}(1,\dots,L+k) = \sum_{\sigma \in \Sigma} \int_{\vec{\ell_1},\dots,\vec{\ell_L}} \frac{\mathcal{N}_\sigma(\{q_{r,0}^{(+)}\},\{p_{j,0}\})}{x_{L+k}} \times \prod_{i=1}^k \frac{1}{-\lambda_{\sigma(i)}} + (\sigma \leftrightarrow \bar{\sigma})$$
 Set of entangled Products of  $k$  causal

thresholds


Is it possible to do it in other way?

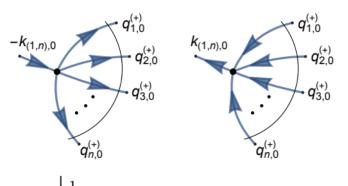


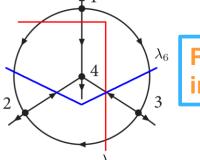
- Geometrical reconstruction (this talk!) Sborlini '21
- Algebraic reconstruction (Lotty)

**Torres Bobadilla '21** 

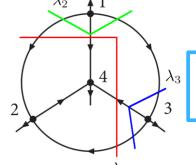
- **Previous concepts** 
  - 1. Diagrams are made of vertices and edges (bunches of propagators, connecting two given vertices)
  - 2. Edges define a basis of momenta, that lead to the "vertex **Defines the casual structure!**
  - 3. Binary partitions are given by subsets of vertices that splits in two the original diagram ——— Connected partitions!




propagators

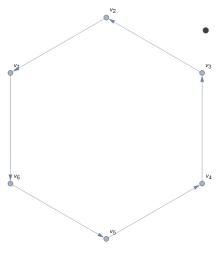

# DESY.

## 1. Generate causal propagators


- Causal propagators are associated to binary connected partitions of the diagram, namely "connected sub-blocks of the diagram"
- They encode the possible physical thresholds
- Involve a consistent (aligned) energy flow through the cut lines
- 2. Order of a diagram: it quantifies the complexity of a given topology
  - k=1 for MLT, k=2 for NMLT and so on k=1
  - A diagram of order k involves products of k causal propagators
- 3. Geometric compatibility rules: determine the entangled thresholds
  - a) All the edges are cut at least once
  - b) Causal propagators do no intersect; i.e. they are associated to disjoint or extended partitions of the diagram
  - c) All the edges involved in a causal threshold must carry momenta flowing in the same direction  $\longrightarrow$  Distinction  $\lambda^+ / \lambda^-$

More detailed explanation arXiv:2102.05062 [hep-ph]






Presence of intersections



Incompatible causal flux





**Example:** 1-loop hexagon (6 vertices, 1 external leg per vertex)

```
NumeroVertices = 6; Orden = NumeroVertices - 1;
Eq[1] = {q[1] - q[2] + p[1]};
Eq[2] = {q[2] - q[3] + p[2]};
Eq[3] = {q[3] - q[4] + p[3]};
Eq[4] = {q[4] - q[5] + p[4]};
Eq[5] = {q[5] - q[6] + p[5]};
Eq[6] = {q[6] - q[1] - (p[1] + p[2] + p[3] + p[4] + p[5])};
```

**Input:** vertex definition, i.e. labelling & momentum conservation

**Vertex matrix:** Basic object to generate the causal representation

#### **Generate causal propagators**



-p[4]+q[2]+q[5]

tmpSALIDAbis = AbsoluteTiming[SALIDAbis = GeneraLambdas[MomentosBASICOS, MatrizVertices]];
Print["Tiempo empleado: ", tmpSALIDAbis[[1]]]
tmpSALIDA2bis = AbsoluteTiming[SALIDA2bis = GeneraListaLambdas[SALIDAbis, MomentosBASICOS]];
Print["Tiempo empleado: ", tmpSALIDA2bis[[1]]]

```
Numero de lambdas: 15
Tiempo empleado: 0.0088112
Numero total de lambdas signados: 30
Tiempo empleado: 0.0018851
```

 $\lambda m[1] \rightarrow -p[1] + q[1] + q[2]$ 

**Generate entangled thresholds** 

(using selection rules)

#### 

Print["Tiempo empleado: ", tmpSALIDA3a[[1]]]

++++ Armado de lista de combinaciones ++++

Construccion combinaciones - paso 1: 11

Construccion combinaciones - paso 2: 88

Construccion combinaciones - paso 3: 295

Construccion combinaciones - paso 4: 594

Construccion combinaciones - paso 5: 771


++++ Aplicacion de criterios de seleccion ++++

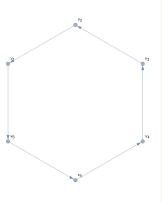
\*Despues de Criterio 1: 345

\*Despues de Criterio 2: 126

Numero total de lambdas signados: 30 Representacion causal obtenida: 252 terminos Tiempo empleado: 1.54657

#### **Causal representation**




(+ similar terms ...)

 $\lambda p[12] \rightarrow p[1] + p[2] + p[3] + p[4] + q[1] + q[5]$ 

 $\lambda p[13] \rightarrow p[1] + p[2] + p[3] + q[1] + q[4]$  $\lambda p[14] \rightarrow p[3] + p[4] + p[5] + q[3] + q[6]$ 

 $\lambda p[15] \rightarrow p[2] + p[3] + p[4] + q[2] + q[5]$ 

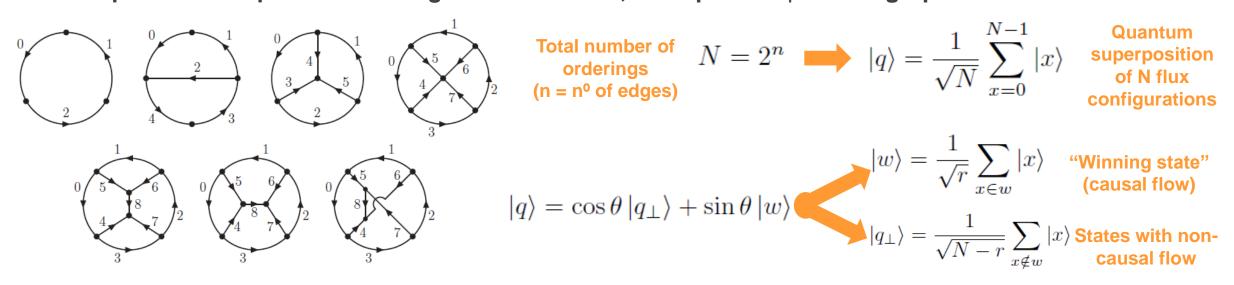




Causal representation

| SALIDA3a[[5]]                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                    | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1}{\lambda m[2] \times \lambda m[5] \times \lambda m[6] \times \lambda m[8] \times \lambda m[9]} + \frac{1}{\lambda m[2]}$                                                                                                                                                               | $\frac{\lambda m[3] \times \lambda m[5] \times \lambda m[6] \times \lambda m[8] \times \lambda m[9]}{\lambda m[3]} + \frac{1}{\lambda m[3]}$         | $(1] \times \lambda m[4] \times \lambda m[6] \times \lambda m[7] \times \lambda m[11] + \frac{1}{\lambda m[1]}$                                               | $2 \times \lambda m[4] \times \lambda m[6] \times \lambda m[7] \times \lambda m[11]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                               | <b>1</b>                                                                                                                                             | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\lambda m[1] \times \lambda m[5] \times \lambda m[6] \times \lambda m[7] \times \lambda m[11]$                                                                                                                                                                                                 | $^{+}$ $\lambda$ m[2] $\times\lambda$ m[5] $\times\lambda$ m[6] $\times\lambda$ m[7] $\times\lambda$ m[11] $^{+}$                                    | $\lambda m[2] \times \lambda m[4] \times \lambda m[6] \times \lambda m[8] \times \lambda m[11]$                                                               | $\lambda m[2] \times \lambda m[5] \times \lambda m[6] \times \lambda m[8] \times \lambda m[11]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                             |                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\lambda m[1] \times \lambda m[4] \times \lambda m[6] \times \lambda m[7] \times \lambda m[12]$                                                                                                                                                                                                 | $\lambda m[2] \times \lambda m[4] \times \lambda m[6] \times \lambda m[7] \times \lambda m[12]$                                                      | $\lambda m[1] \times \lambda m[3] \times \lambda m[6] \times \lambda m[10] \times \lambda m[12]$                                                              | $\lambda m[1] \times \lambda m[4] \times \lambda m[6] \times \lambda m[10] \times \lambda m[12]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1                                                                                                                                                                                                                                                                                               | +                                                                                                                                                    |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\lambda m[1] \times \lambda m[3] \times \lambda m[5] \times \lambda m[6] \times \lambda m[13]$                                                                                                                                                                                                 | $\lambda m[1] \times \lambda m[5] \times \lambda m[6] \times \lambda m[7] \times \lambda m[13]$                                                      | $\lambda m[2] \times \lambda m[5] \times \lambda m[6] \times \lambda m[7] \times \lambda m[13]$                                                               | $\lambda m[2] \times \lambda m[5] \times \lambda m[6] \times \lambda m[9] \times \lambda m[13]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                                                                                                                                                                                                                                                               | +                                                                                                                                                    | +1                                                                                                                                                            | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\lambda m[3] \times \lambda m[5] \times \lambda m[6] \times \lambda m[9] \times \lambda m[13]$                                                                                                                                                                                                 | $\lambda$ m[1] $\times \lambda$ m[3] $\times \lambda$ m[6] $\times \lambda$ m[12] $\times \lambda$ m[13]                                             | $\lambda m[1] \times \lambda m[6] \times \lambda m[7] \times \lambda m[12] \times \lambda m[13]$                                                              | $\lambda$ m[2] $\times \lambda$ m[6] $\times \lambda$ m[7] $\times \lambda$ m[12] $\times \lambda$ m[13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                               | +1                                                                                                                                                   | + 1                                                                                                                                                           | + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\lambda$ m[2] $\times \lambda$ m[6] $\times \lambda$ m[9] $\times \lambda$ m[12] $\times \lambda$ m[13]                                                                                                                                                                                        | $\lambda m[3] \times \lambda m[6] \times \lambda m[9] \times \lambda m[12] \times \lambda m[13]$                                                     | $  \lambda m[1] \times \lambda m[3] \times \lambda m[5] \times \lambda m[6] \times \lambda m[14]$                                                             | $\lambda m[3] \times \lambda m[5] \times \lambda m[6] \times \lambda m[8] \times \lambda m[14]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                                                                                                                                                                                                                                                               | + - 1                                                                                                                                                | + 1                                                                                                                                                           | + - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\lambda m[1] \times \lambda m[3] \times \lambda m[6] \times \lambda m[10] \times \lambda m[14]$                                                                                                                                                                                                | \text{Am[1] \times \text{Am[4] \times \text{Am[6] \times \text{Am[10] \times \text{Am[14]}}                                                          | ]                                                                                                                                                             | ] $\lambda m[4] \times \lambda m[6] \times \lambda m[8] \times \lambda m[10] \times \lambda m[14]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                 | + - Im(1) - 2m(5) - 2m(6) - 2m(11) - 2m(14)                                                                                                          | - +                                                                                                                                                           | _ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| \[ \text{M[I]} \times \text{M[I]} \times \text{M[II]} \times \text{M[II]} \times \text{M[II]}                                                                                                                                                                                                   | \[ \lambda \mu[1] \times \lambda \mu[6] \times \mu[11] \times \lambda \mu[14]                                                                        | ]                                                                                                                                                             | ] $\lambda m[5] \times \lambda m[6] \times \lambda m[8] \times \lambda m[11] \times \lambda m[14]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                 | +                                                                                                                                                    | $\frac{1}{\lambda m[3] \times \lambda m[6] \times \lambda m[8] \times \lambda m[9] \times \lambda m[15]} +$                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                    | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1}{2m[4] \vee 2m[6] \vee 2m[8] \vee 2m[10] \vee 2m[15]}$                                                                                                                                                                                                                                 | $+\frac{1}{\lambda m(2) \times \lambda m(4) \times \lambda m(6) \times \lambda m(12) \times \lambda m(15)}$                                          | - + <u></u>                                                                                                                                                   | $\frac{1}{1} + \frac{1}{\lambda m[3] \times \lambda m[6] \times \lambda m[9] \times \lambda m[12] \times \lambda m[15]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                                                                                                                                                                                                                                                                                               | 7 (2) × 7 (4) × 7 (5) × 7 (12) × 7 (13)                                                                                                              | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\lambda m[3] \times \lambda m[6] \times \lambda m[10] \times \lambda m[12] \times \lambda m[15]$                                                                                                                                                                                               | $\frac{1}{1} + \frac{1}{\lambda m[4] \times \lambda m[6] \times \lambda m[10] \times \lambda m[12] \times \lambda m[1]}$                             | $\frac{1}{100} + \frac{1}{\lambda m(2) \times \lambda m(5) \times \lambda m(8) \times \lambda m(9) \times \lambda m(1)}$                                      | $\frac{1}{1} + \frac{1}{\lambda m[3] \times \lambda m[5] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[5] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[5] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[5] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[5] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[5] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[8] \times \lambda m[9] \times \lambda p[1]} + \frac{1}{\lambda m[3] \times \lambda m[8] $ |
| 1                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                    | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\lambda m[2] \times \lambda m[4] \times \lambda m[8] \times \lambda m[11] \times \lambda p[1]$                                                                                                                                                                                                 | $+\frac{-}{\lambda m[2] \times \lambda m[5] \times \lambda m[8] \times \lambda m[11] \times \lambda p[1]}$                                           | $\frac{-}{\lambda m[3] \times \lambda m[5] \times \lambda m[8] \times \lambda m[14] \times \lambda p[1]} +$                                                   | $\frac{1}{\lambda m[3] \times \lambda m[8] \times \lambda m[10] \times \lambda m[14] \times \lambda p[1]}$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                    | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\lambda m[4] \times \lambda m[8] \times \lambda m[10] \times \lambda m[14] \times \lambda p[1]$                                                                                                                                                                                                | $+\frac{1}{\lambda m[4] \times \lambda m[8] \times \lambda m[11] \times \lambda m[14] \times \lambda p[1]}$                                          | $+\frac{1}{\lambda m[5] \times \lambda m[8] \times \lambda m[11] \times \lambda m[14] \times \lambda p[1]}$                                                   | $\frac{1}{1}$ + $\frac{1}{\lambda m[2] \times \lambda m[4] \times \lambda m[8] \times \lambda m[15] \times \lambda p[1]}$ +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                    | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{\lambda m[2] \times \lambda m[8] \times \lambda m[9] \times \lambda m[15] \times \lambda p[1]}{\lambda m[2] \times \lambda m[8] \times \lambda m[9] \times \lambda m[15] \times \lambda p[1]}$                                                                                           | $+\frac{1}{\lambda m[3] \times \lambda m[8] \times \lambda m[9] \times \lambda m[15] \times \lambda p[1]}$                                           | $\frac{1}{\lambda \text{m[3]} \times \lambda \text{m[8]} \times \lambda \text{m[10]} \times \lambda \text{m[15]} \times \lambda \text{p[1]}}$                 | $+\frac{1}{\lambda m[4] \times \lambda m[8] \times \lambda m[10] \times \lambda m[15] \times \lambda p[1]} + \frac{1}{\lambda m[4] \times \lambda m[8] \times \lambda m[10] \times \lambda m[15] \times \lambda p[1]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                    | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{\lambda \texttt{m[1]} \times \lambda \texttt{m[3]} \times \lambda \texttt{m[5]} \times \lambda \texttt{m[14]} \times \lambda \texttt{p[2]}}{\lambda \texttt{m[1]} \times \lambda \texttt{m[3]} \times \lambda \texttt{m[5]} \times \lambda \texttt{m[14]} \times \lambda \texttt{p[2]}}$ | $+\frac{1}{\lambda m[1] \times \lambda m[3] \times \lambda m[10] \times \lambda m[14] \times \lambda p[2]}$                                          | $^{+} \overline{\lambda \texttt{m[1]} \times \lambda \texttt{m[4]} \times \lambda \texttt{m[10]} \times \lambda \texttt{m[14]} \times \lambda \texttt{p[2]}}$ | $^{+}\frac{1}{\lambda m[1] \times \lambda m[4] \times \lambda m[11] \times \lambda m[14] \times \lambda p[2]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                    | 1                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\lambda \texttt{m[1]} \times \lambda \texttt{m[5]} \times \lambda \texttt{m[11]} \times \lambda \texttt{m[14]} \times \lambda \texttt{p[2]}$                                                                                                                                                   | $^{\top} \lambda \texttt{m[1]} \times \lambda \texttt{m[4]} \times \lambda \texttt{m[7]} \times \lambda \texttt{m[11]} \times \lambda \texttt{p[3]}$ | $+ \frac{1}{\lambda m[2] \times \lambda m[4] \times \lambda m[7] \times \lambda m[11] \times \lambda p[3]}$                                                   | $\lambda m[1] \times \lambda m[5] \times \lambda m[7] \times \lambda m[11] \times \lambda p[3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

(+ similar terms ...)


## **Quantum Algorithm for Causal Reconstruction**



New technology based on Grover's algorithm to identify causal flux!

arXiv:2105.08703 [hep-ph]

- We assign 1 qubit to each edge, and impose logical conditions to select configurations without closed cycles
   Non-cyclical configurations = Causal flux
- Important: "loop" refers to integration variables; "eloop" to loops in the graph

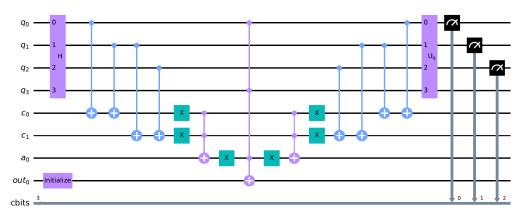


• Grover's algorithm **enhances** the probability of the **winning state** by using two operators:

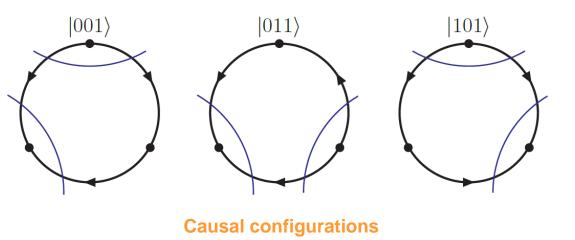
$$U_w = \boldsymbol{I} - 2|w\rangle\langle w|$$
  $U_q = 2|q\rangle\langle q| - \boldsymbol{I} \longrightarrow (U_q U_w)^t |q\rangle = \cos\theta_t |q_\perp\rangle + \sin\theta_t |w\rangle$ 

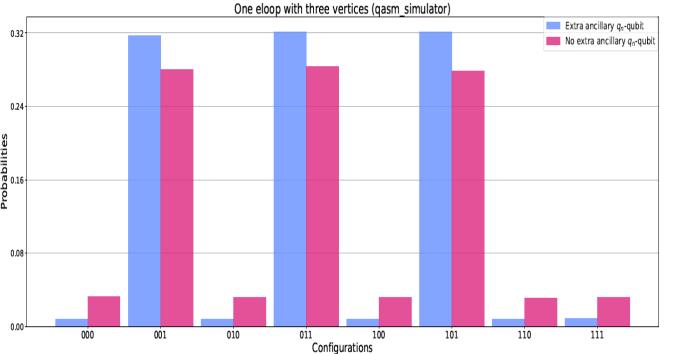
Oracle operator (changes sign of winning states)

Diffusion operator (reflects with respect to initial state)




## **Quantum Algorithm for Causal Reconstruction**


DESY.


- Implemented with Qiskit and run in IBM Q (simulator & real QC)
- Several topologies studied!! Enhanced performance with extra-qubits

arXiv:2105.08703 [hep-ph]



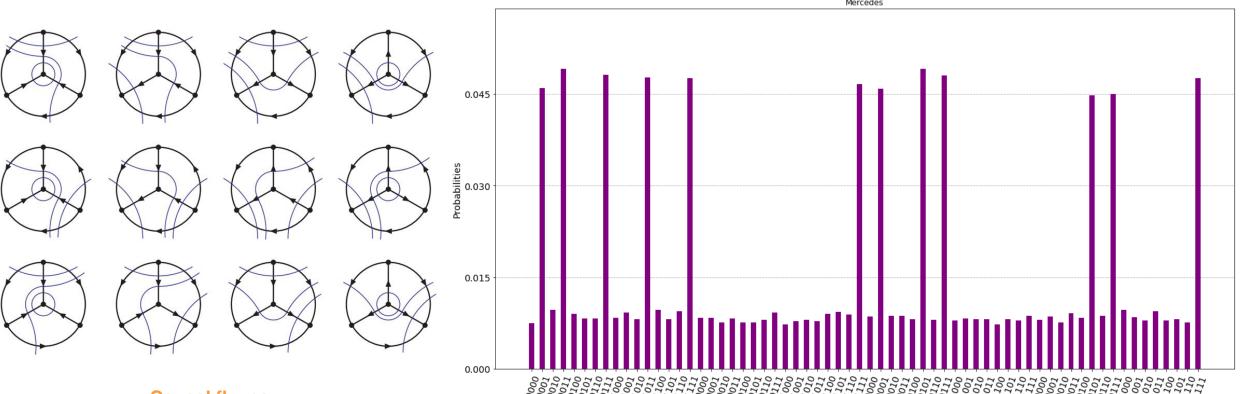
#### **Quantum circuit**





The selected configurations are exactly |001>, |011>, |101>

The algorithm identifies the causal fluxes, relying on geometrical concepts!


## **Quantum Algorithm for Causal Reconstruction**



Optimized algorithm based on properties of the adjacency matrix

Preliminary results!!
To be published soon!!

- Reduced number of qubits (allows to implement more complicated topologies in current devices)
- Successful identification of causal fluxes!!



Causal fluxes (+ possible causal entangled thresholds)

Probability distribution (all the 12 causal fluxes identified!!)

## **Conclusions**



- Use LTD to cleverly rewrite Feynman integrals: Minkowski to Euclidean
- Achieve local integrand representations free of IR/UV singularities for physical observables
- Novel LTD approach based on nested residues leads to manifestly causal representations of multiloop scattering amplitudes!
- Very compact formulae with strong physical/conceptual motivation
- Geometrical rules select entangled thresholds. Complete reconstruction of multiloop amplitudes!
- Quantum algorithms to speed-up causal flux selection. Exploring new disruptive tools for breaking the precision frontier!!



# BACKUP SLIDES.



• Practical (<u>mathematical</u>) example:

$$f(\vec{x}) = \frac{1}{(x_1^2 - y_1^2) \dots (x_L^2 - y_L^2)} \quad \text{to calculate} \quad I = \left(\prod_{i=1}^L \int \frac{dx_i}{2\pi \imath}\right) f(\vec{x})$$
 Complex  $y_i \to \tilde{y}_i = \sqrt{y_i^2 - \imath 0}$  
$$z_{L+1} = -\sum_{j=1}^L x_j + k_{L+1} \quad \text{Sum of integration variables (real)}$$

• 1st step: Apply C.R.T. in  $x_1$ , by promoting  $x_1 \in \mathbb{R} \to \mathbb{C}$  (the other x's remain real)

$$I = -\left(\prod_{i=2}^{L} \int \frac{dx_{i}}{2\pi i}\right) \sum_{x_{1,j} \in \text{Poles}[f,x_{1}]} \text{Res}\left(f(\vec{x}), \{x_{1},x_{1,j}\}\right) \theta\left(-\text{Im}(x_{1,j})\right) \qquad I = -\left(\prod_{i=2}^{L} \int \frac{dx_{i}}{2\pi i}\right) \sum_{x_{1,j} \in \text{Poles}^{(+)}[f,x_{1}]} \text{Res}\left(f(\vec{x}), \{x_{1},x_{1,j}\}\right)$$

$$\text{Theta functions removed}$$

Subset of poles with negative imaginary part IMPORTANT! x's are real, y's are complex



Practical (mathematical) example:

$$I = -\left(\prod_{i=2}^{L} \int \frac{dx_i}{2\pi i}\right) \sum_{x_{1,j} \in \text{Poles}^{(+)}[f,x_1]} \text{Res}\left(f(\vec{x}), \{x_1, x_{1,j}\}\right)$$

Poles<sup>(+)</sup>
$$[f, x_1] = \{y_1, y_{L+1} - k_{L+1} - x_2 - \dots - x_L\}$$

$$I = -\left(\prod_{i=2}^{L} \int \frac{dx_i}{2\pi i}\right) \sum_{x_{1,j} \in \text{Poles}^{(+)}[f,x_1]} \text{Res}\left(f(\vec{x}), \{x_1, x_{1,j}\}\right) \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)\left(x_2^2 - y_2^2\right) \dots \left(x_L^2 - y_L^2\right) \left((y_1 + x_2 + \dots + x_L - k_{L+1})^2 - y_{L+1}^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)\left(x_2^2 - y_2^2\right) \dots \left(x_L^2 - y_L^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)\left(x_2^2 - y_2^2\right) \dots \left(x_L^2 - y_L^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)\left(x_2^2 - y_2^2\right) \dots \left(x_L^2 - y_L^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)\left(x_2^2 - y_2^2\right) \dots \left(x_L^2 - y_L^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)\left(x_2^2 - y_2^2\right) \dots \left(x_L^2 - y_L^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)\left(x_2^2 - y_2^2\right) \dots \left(x_L^2 - y_L^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)\left(x_1^2 - y_2^2\right) \dots \left(x_L^2 - y_L^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2 - y_1^2\right)} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1}\left((y_{L+1} + k_{L+1} - x_2 - \dots - x_L\right)^2} \\ + \frac{1}{2y_{L+1$$

Sum of the residues in x<sub>1</sub> (negative imaginary part)

**2**<sup>nd</sup> **step:** Apply C.R.T. in  $x_2$ , by promoting  $x_2 \in \mathbb{R} \to \mathbb{C}$  (the other x's remain real)

$$\operatorname{Res} \left( \operatorname{Res} (f, \{x_1, \operatorname{Im} (x_1) < 0\}), \{x_2, \operatorname{Im} (x_2) < 0\} \right) \\ = \sum_{x_{2,l} \in \operatorname{Poles} [f, x_1, x_2]} \operatorname{Res} \left( \left( \operatorname{Res} (f, \{x_1, \operatorname{Im} (x_1) < 0\}), \{x_2, x_{2,l}\} \right) \theta(-\operatorname{Im} (x_{2,l})) \right)$$

Poles
$$[f, x_1; x_2] = \{\pm y_2, \pm y_1 + y_{L+1} - x_3 - \dots - x_L + k_{L+1}, \pm y_{L+1} - y_1 - x_3 - \dots - x_L + k_{L+1}\}$$

All the possible poles:

SIGN OF IMAGINARY PART + or -!!!



• Practical (<u>mathematical</u>) example:

$$\operatorname{Res}(\operatorname{Res}(f, \{x_1, \operatorname{Im}(x_1) < 0\}), \{x_2, \operatorname{Im}(x_2) < 0\}) = \sum_{x_{2,l} \in \operatorname{Poles}[f, x_1, x_2]} \operatorname{Res}((\operatorname{Res}(f, \{x_1, \operatorname{Im}(x_1) < 0\}), \{x_2, x_{2,l}\}) \theta(-\operatorname{Im}(x_{2,l}))$$

• 3<sup>rd</sup> step: Collect the different contributions according to  $\theta(-\operatorname{Im}(x_{2,l}))$ :

$$\operatorname{Res}(\left(\operatorname{Res}(f, \{x_{1}, \operatorname{Im}(x_{1}) < 0\}\right), \{x_{2}, y_{2}\}))$$

$$= \frac{1}{4y_{1}y_{2}(x_{3}^{2} - y_{3}^{2}) \dots (x_{L}^{2} - y_{L}^{2})((y_{1} + y_{2} + x_{3} + \dots + x_{L} - k_{L+1})^{2} - y_{L+1}^{2})}$$

$$+ \frac{1}{4y_{L+1}y_{2}((y_{L+1} - y_{2} - x_{3} - \dots - x_{L} + k_{L+1})^{2} - y_{1}^{2}) \dots (x_{L}^{2} - y_{L}^{2})}$$

$$\operatorname{Res}(\operatorname{Res}(f, \{x_{1}, \operatorname{Im}(x_{1}) < 0\}), \{x_{2}, y_{1} + y_{L+1} - x_{3} - \dots - x_{L} + k_{L+1}\})$$

$$= \frac{1}{4y_{1}y_{3}((y_{1} + y_{L+1} - x_{3} - \dots - x_{L} + k_{L+1})^{2} - y_{2}^{2})(x_{3}^{2} - y_{3}^{2}) \dots (x_{L}^{2} - y_{L}^{2})}$$

Theta functions are trivially 1: y's have negative imaginary part, x's are real



[Res(Res(f, { $x_1$ ,  $y_1$ }), { $x_2$ ,  $y_{L+1} - y_1 - x_3 - \dots - x_L + k_{L+1}$ }) +Res(Res(f, { $x_1$ ,  $y_{L+1} - x_2 - \dots - x_L + k_{L+1}$ }), { $x_2$ ,  $y_{L+1} - y_1 - x_3 - \dots - x_L + k_{L+1}$ })]  $\theta$ (Im( $y_1 - y_{L+1}$ ))

Different-sign combinations of y's: NON-TRIVIAL THETA!



POLES: VANISH!!



Theorem: Given a generic\* rational function  $F(x_i,x_j)=rac{P(x_i,x_j)}{((x_i-a_i)^2-y_i^2)^{\gamma_i}((x_i+x_j-a_{ij})^2-y_k^2)^{\gamma_k}}$ 

then: Res(Res(
$$F(x_i, x_j)$$
,  $\{x_i, y_i + a_i\}$ ),  $\{x_j, y_k - y_i + a_{ij} - a_i\}$ )
$$= -\text{Res}\left(\text{Res}\left(F(x_i, x_j), \{x_i, y_k - x_j + a_{ij}\}\right), \{x_j, y_k - y_i + a_{ij} - a_i\}\right)$$

- Physical consequences:
  - 1. **Displaced poles** are associated to **un-physical** contributions:

"they can not be mapped into cuts"

2. After applying C.R.T. to all the loop momenta and **summing over the physical poles**:

"only same-sign combinations of  $q_{k,0}^{(+)}$  remain"

Cancellation of displaced poles

"Aligned contributions"

**Causal propagators** 



Theorem: Given a generic\* rational function  $F(x_i,x_j)=\frac{P(x_i,x_j)}{((x_i-a_i)^2-y_i^2)^{\gamma_i}((x_i+x_j-a_{ij})^2-y_k^2)^{\gamma_k}}$ 

then: 
$$\operatorname{Res}(\operatorname{Res}(F(x_i, x_j), \{x_i, y_i + a_i\}), \{x_j, y_k - y_i + a_{ij} - a_i\})$$
  
=  $-\operatorname{Res}(\operatorname{Res}(F(x_i, x_j), \{x_i, y_k - x_j + a_{ij}\}), \{x_j, y_k - y_i + a_{ij} - a_i\})$ 

### Mathematical consequences:

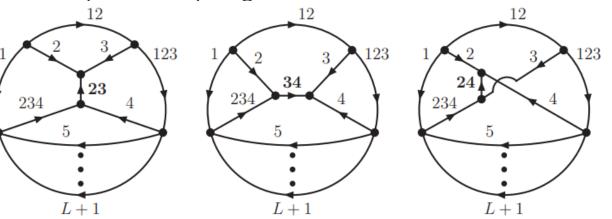
- 1. In each iteration of C.R.T., contributions with different sign combinations of y's vanish
- 2. Thus, after iterating over all integration variables, only same-sign combinations of y's remain

$$\begin{array}{l} \operatorname{Example:} & \operatorname{Res}(\operatorname{Res}(f,\{x_1,\operatorname{Im}(x_1)<0\}),\{x_2,\operatorname{Im}(x_2)<0\}\,) \\ = \frac{1}{4y_1y_2\left((y_1+y_2-k_3)^2-y_3^2\right)} + \frac{1}{4y_2y_3\left((y_3+y_1+k_3)^2-y_2^2\right)} \\ & + \frac{1}{4y_1y_3\left((y_3-y_2+k_3)^2-y_1^2\right)} \\ = -\frac{1}{8y_1y_2y_3} \left(\frac{1}{y_1+y_2+y_3-k_3} + \frac{1}{y_1+y_2+y_3+k_3}\right) \end{array}$$

#### **Connection to QFT**

$$y_{i} \longleftrightarrow q_{i,0}^{(+)} = \sqrt{\mathbf{q}_{i}^{2} + m_{i}^{2} - i0}$$

$$x_{i} \longleftrightarrow q_{i,0}$$


$$a_{i} \longleftrightarrow \{k_{m,0}\}$$

# **Nested residues: Compact representations**



It works also for (much) more complicated topologies!!!

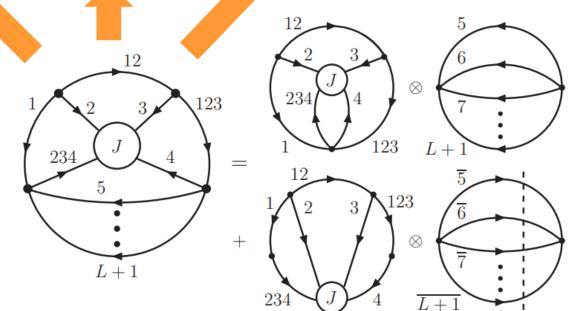
NNNN
Maximal
Loop
Topologies
(6 vertices,
L+5 lines)



Thanks to
factorization
properties, the
singular and
causal structure is
given in terms of
simpler objects

Lines = sets of propagators

$$\mathcal{A}_{N^{4}MLT}^{(L)}(1, \dots, L+1, 12, 123, 234, J)$$


$$= \mathcal{A}_{N^{4}MLT}^{(4)}(1, 2, 3, 4, 12, 123, 234, J)$$

$$\otimes \mathcal{A}_{MLT}^{(L-4)}(5, \dots, L+1)$$

$$+ \mathcal{A}_{N^{2}MLT}^{(3)}(1 \cup 234, 2, 3, 4 \cup 123, 12, J)$$

$$\otimes \mathcal{A}_{MLT}^{(L-3)}(\overline{5}, \dots, \overline{L+1})$$

N<sup>4</sup>MLT universal topology

