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Massive particles at the LHC

What should be treated as massive depends on the context. For the LHC:
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• Treating particles as massive comes at a cost
• Makes many calculations much more involved
• Gives rise to interesting mathematics
• Can make calculations more realistic
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Associated Higgs boson production
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Dijet mass analysis

0+1+2 leptons

2+3 jets, 2 b-tags

Weighted by Higgs S/B

[ATLAS ’18]

• VH production is third largest production channel for the Higgs boson
→ gives access to HVV coupling

• H→ bb̄ accessible in VH production via substructure techniques
→ observation by ATLAS and CMS relied heavily on VH production
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Status of theory predictions

• Higher-order corrections to VH have a long history
• NLO QCD

[Han, Willenbrock ’90] [Baer, Bailey, Owens ’93] [Ohnemus, Stirling ’93] [Mrenna, Yuan ’97] [Spira ’98] [Djouadi, Spira ’99]

• NLO EW
[Ciccolini, Dittmaier, Krämer ’03] [Denner, Dittmaier, Kallweit, Mück ’11]

• NLO matched to PS
[Frixione, Webber ’05] [Hamilton, Richardson, Tully ’09] [Luisoni, Nason, Oleari, Tramontano ’13]
[Granata, Lindert, Oleari, Pozzorini ’17]

• Inclusive NNLO QCD
[Brein, Djouadi, Harlander ’03] [Brein, Harlander, Wiesemann, Zirke ’12] [Brein, Harlander, Zirke ’13]

• Differential NNLO QCD
[Ferrera, Grazzini, Tramontano ’11] [Ferrera, Grazzini, Tramontano ’13] [Campbell, Ellis, Williams ’16] [Astill, Bizoń, Re, Zanderighi ’16]
[Ferrera, Somogyi, Tramontano ’17] [Caola, Luisoni, Melnikov, Röntsch ’17] [Gauld, Gehrmann-de Ridder, Glover, Huss, Majer ’19]
[Alioli, Broggio, Kallweit, Lim, Rottoli ’19]

• Differential NNLO QCD calculation so far used massless b quarks
⇒ Investigate mass effects and compare massless and massive cases
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Why use massive b quarks?

1. Kinematic distributions may have regions that are sensitive to b mass

2. Ability to use conventional jet algorithms
3. Top-loop contribution (∼ ybyt) to H→ bb̄

[Caola, Luisoni, Melnikov, Röntsch ’17]

• Only possible with chirality flip of b quark
• Consistent treatment requires massive b quarks
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Why use massive b quarks?

1. Kinematic distributions may have regions that are sensitive to b mass
2. Ability to use conventional jet algorithms
Massless b quarks:

• Soft gluons can split into wide-angle bb̄ pair

• End up in different jets

→ need flavour-kt algorithm to define b jets

dij =
∆R2ij
R2

×

{
min(k2t,i, k

2
t,j), softer of i, j is flavourless

max(k2t,i, k
2
t,j), softer of i, j is flavoured

3

4

1

2

k

k

k

k

[Banfi, Salam, Zanderighi ’06]

Or use massive b quarks and anti-kt algorithm
→ closer to current experimental analyses

3. Top-loop contribution (∼ ybyt) to H→ bb̄

[Caola, Luisoni, Melnikov, Röntsch ’17]

• Only possible with chirality flip of b quark

• Consistent treatment requires massive b quarks
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Our setup
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• Radiative corrections to production and decay cause IR singularities
• Work in nested soft-collinear subtraction scheme

[Caola, Melnikov, Röntsch ’17] [Caola, Melnikov, Röntsch ’19]

• Extract poles of soft and collinear singularities from real radiation
and cancel them against IR poles from virtual corrections 6
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Our setup
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• Production at NNLO QCD based on [Caola, Luisoni, Melnikov, Röntsch ’17]
+ New analytic results for integrated subtraction terms

[Caola, Delto, Frellesvig, Melnikov ’18] [Delto, Melnikov ’19]

+ Modifications from massive b quarks
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Our setup
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• Decay H→ bb̄ at NNLO QCD
• with massless b quarks based on [Caola, Luisoni, Melnikov, Röntsch ’17]
and updates from [Caola, Melnikov, Röntsch ’19]

• with massive b quarks based on [AB, Bizoń ’19]
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Our setup
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• Combine production and decay processes using
narrow-width approximation

dσWH(bb̄) = Br(H→ bb̄)× dσWH ×
dΓbb̄
Γbb̄
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Our setup – fiducial cuts

• Use jet algorithm to cluster QCD partons;
require at least two b jets (R = 0.4):

• Massless case: flavour-kt algorithm [Banfi, Salam, Zanderighi ’06]

• Massive case: anti-kt algorithm [Cacciari, Salam ’08]

• Impose cuts on final-state leptons and b jets
|ηl| < 2.5, |ηj,b| < 2.5,
pt,l > 15 GeV, pt,jb > 25 GeV

• Boosted setup: additional pt,W > 150GeV cut
(interesting region to identify H→ bb̄ decay)
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Fiducial cross-sections
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Fiducial cross-sections: Reasons for differences

• Main reason: Differences in gluon radiation for H→ bb̄
• Collinear gluon emission probability differs:

Massless b quarks

dP(θ) ∼ dθ2

θ2

dP(θ)
dθ

θ

→ logarithmic enhancement

Massive b quarks

dP(θ) ∼ dθ2

θ2 +m2
b/E2b

dP(θ)
dθ

θ

→ mass screens singularity
• Fiducial cuts are harder to pass for H→ bb̄g with massless b quarks
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Top-loop contribution (∼ ybyt) to H→ bb̄

[Caola, Luisoni, Melnikov, Röntsch ’17]

• Calculated exactly in [Primo, Sasso, Somogyi, Tramontano ’18]
• Turns out to be only a minor effect
• Contribute to fiducial cross sections only at sub-percent level
• Included in all results with massive b quarks presented here anyway
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Invariant mass distribution

• Only delta peak at LO→ shape is determined by radiative corrections
• Differences in gluon radiation between massless and massive case
affect shape of the distribution
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Transverse momentum of bb̄ pairs
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Transverse momentum of bb̄ pairs

• Bulk shows flat, O(5%), differences between
massless and massive cases
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Transverse momentum of bb̄ pairs

• Tails differ more substantially, up to O(35%)
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Transverse momentum of bb̄ pairs

• Tails differ more substantially, up to O(35%)

• Flavour-kt algorithm starts clustering
high-pt bb̄ pairs as single jet earlier than anti-kt

• Difference already present at LO 12



Approximate NNLO results

• Question: Can we avoid a massive NNLO calculation via K-factors?
• Answer: Depends (on the observable)

• pt,H(bb̄): Works decently well
• MH(bb̄): Does not capture all details, O(10%) differences 13



Comparison to parton showers

• Parton-level parton shower calculation with POWHEG and Pythia8
• pt,H(bb̄): O(5%) differences
• MH(bb̄): Larger, up to O(25%) differences
→ shift by δMH(bb̄) ∼ −4GeV improves agreement 14



A glimpse on follow-up work: pp→ ZH(bb̄)

Follow-up work in [Bizon, Caola, Melnikov, Röntsch ’21]:
• Implementation of ZH production with H→ bb̄ decay

• Similar to WH, but involves gg→ ZH channel (starts at O(α2s))
• Noticable impact on fiducial cross-sections and distributions
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[Bizon, Caola, Melnikov, Röntsch ’21]

• Investigation of impact of anomalous HVV couplings
• Parametrise deviation from SM using SMEFT operators (only HVV sector)
• Different scenarios become distinguishable away from peak
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Conclusions

• We calculated pp→ W+H→ e+νebb̄ at NNLO QCD
with massive b quarks

• Allows to use conventional jet algorithms
→ makes calculation more aligned with current experimental analyses

• Found O(5%) differences between massive and massless
fiducial cross sections

• Differences are more pronounced for certain distributions (e.g. pt,H(bb̄))
• Approximate NNLO via differential K-factors sometimes possible
(depends on observable)

• Comparison between fixed-order and parton shower calculations
allows to judge agreement between those descriptions
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