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~~ In obtaining the expression (11) the mass difference
between the charged and neutral has been ignored.
~2M. Adernollo and R. Gatto, Nuovo Cimento 44A, 282
(1966); see also J. Pasupathy and H, . E. Marshak,
Phys. Rev. Letters 17, 888 (1966).
~3The predicted ratio I.eq. |,'12)] from the current alge-

bra is slightly larger than that (0.23%) obtained from
the p-dominance model of Ref. 2. This seems to be
true also in the other case of the ratio &(t) ~+m y}/
&(VV} calculated in Refs. 12 and 14.
L. M. Brown and P. Singer, Phys. Rev. Letters 8,

460 (1962}.
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Leptons interact only with photons, and with
the intermediate bosons that presumably me-
diate weak interactions. What could be more
natura, l than to unite' these spin-one bosons
into a multiplet of gauge fields? Standing in
the way of this synthesis are the obvious dif-
ferences in the masses of the photon and inter-
rnediate meson, and in their couplings. We
might hope to understand these differences
by imagining that the symmetries relating the
weak and electromagnetic interactions a,re ex-
act symmetries of the Lagrangian but are bro-
ken by the vacuum. However, this raises the
specter of unwanted massless Goldstone bosons. '
This note will describe a model in which the
symmetry between the electromagnetic and
weak interactions is spontaneously broken,
but in which the Goldstone bosons are avoided
by introducing the photon and the intermediate-
boson fields as gauge fields. s The model may
be renormalizable.
We will restrict our attention to symmetry

groups that connect the observed electron-type
leptons only with each other, i.e. , not with
muon-type leptons or other unobserved leptons
or hadrons. The symmetries then act on a left-
handed doublet

and on a right-handed singlet

R = 4(i-},)le.
The largest group that leaves invariant the kine-
matic terms -I-yI" 8&L -R yI" 8&B of the Lagrang-
ian consists of the electronic isospin T acting
on L, plus the numbers NI„Ng of left- and
right-handed electron-type leptons. As far
as we know, two of these symmetries are en-
tirely unbroken: the charge Q =T3 NR 2NL—, —
and the electron number N=N~+NL. But the
gauge field corresponding to an unbroken sym-
metry will have zero mass, ' and there is no
massless particle coupled to N, ' so we must
form our gauge group out of the electronic iso-
spin T and the electronic hyperchange F=—Ng
+ 2NL.
Therefore, we shall construct our Lagrang-

ian out of L and B, plus gauge fields A& and
B& coupled to T and ~, plus a spin-zero dou-
blet

whose vacuum expectation value will break T
and ~ and give the electron its mass. The on-
ly renormalizable Lagrangian which is invar-
iant under T and & gauge transformations is

2=-g(6 A —6 A +gA xA ) -«(6 B -6 B ) -R}' (& ig'B )R Ly (6 igt—~ A —i2g'B )L-p. V V p, P, V P V V P P

1 1 2 —4 2 2igA ~ ty-+i ,g'B yl ——G (LcpR+Ry L)—M y y+h(y y) . (4)p, p, p, 1

We have chosen the phase of the 8 field to make Ge real, and can also adjust the phase of the L and
Q fields to make the vacuum expectation value A.

—= (y') real. The "physical" p fields are then p

In memory of Steven Weinberg
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Hard (perturbative) scattering process  
‣ N(N)LO QCD + EW 
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Theoretical Predictions for the LHC

PDFs 
‣ DGLAP fitting

Hard (perturbative) scattering process  
‣ N(N)LO QCD + EW 

p1 = x1P1

p2 = x2P2

h2

h1

X

F (Q)
i

j

d� =
X

ij

Z
dx1dx2f

(P1)
1 (x1)f

(P2)
2 (x2)d�̂ij(x1x2s)

Key: QCD factorization:
Short distance non-
perturbative effects (PDFs) 
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Theoretical Predictions for the LHC

QCD Bremsstrahlung  
‣ parton shower 
‣ matched to NLO matrix elements 

QED Bremsstrahlung  
‣ parton shower 
‣ matched to NLO matrix elements

Hard (perturbative) scattering process  
‣ N(N)LO QCD + EW 

PDFs 
‣ DGLAP fitting

p1 = x1P1

p2 = x2P2

h2

h1

X

F (Q)
i

j

d� =
X

ij

Z
dx1dx2f

(P1)
1 (x1)f

(P2)
2 (x2)d�̂ij(x1x2s)

Key: QCD factorization:

8

Short distance non-
perturbative effects (PDFs) 



Theoretical Predictions for the LHC

QCD Bremsstrahlung  
‣ parton shower 
‣ matched to NLO matrix elements 

QED Bremsstrahlung  
‣ parton shower 
‣ matched to NLO matrix elements

Hadronization/fragmentation/decay 
‣ pheno models 

Multi Particle Interactions (MPI) 
‣ pheno model 

Hard (perturbative) scattering process  
‣ N(N)LO QCD + EW 

PDFs 
‣ DGLAP fitting

p1 = x1P1

p2 = x2P2

h2

h1

X

F (Q)
i

j

d� =
X

ij

Z
dx1dx2f

(P1)
1 (x1)f

(P2)
2 (x2)d�̂ij(x1x2s)

Key: QCD factorization:

9

Short distance non-
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Success of Run-I & Run-II of the LHC

Overall remarkable data vs. theory agreement
➡Precision tests of the SM at the quantum level in a multitude of processes
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W

n jet(s)≥

Z

n jet(s)≥

γW γZ WWWZ ZZ VVV WWWWWZ WZZ ZZZ γWV γγW γγZ
µll, l=e,→, Zνl→: fiducial with Wγγ,WγγEW,Z

qqW
EW qqZ

EW
WW
→γγ

γqqW
EW

ssWW
 EW

γqqZ
EW

qqWZ
EW

qqZZ
EW tt

=n jet(s)

t-cht tW s-cht γtt tZq ttZ γt ttW tttt
σΔ in exp. HσΔTh. 

ggH qqH
VBF VH WH ZH ttH tH HH 

CMS 95%CL limits at 7, 8 and 13 TeV

)-1 5.0 fb≤7 TeV CMS measurement (L 
)-1 19.6 fb≤8 TeV CMS measurement (L 
)-1 137 fb≤13 TeV CMS measurement (L 

Theory prediction



With the discovery of the Higgs the SM is ‘complete’
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Is the ‘nightmare scenario’ becoming reality?

With the discovery of the Higgs the SM is ‘complete’
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Why do we need SM theory?
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SM parameters and  
particle properties

mh mt

mW
BRs

SM dynamics

(Differential) cross sections PDFs & αs

Higgs couplings

BSM searches

EFT coefficients 
Tails of distributions

Anomalous couplings

EW couplings

CKM

This is not the ‘nightmare scenario’.
However, precision key!



Timescale of the LHC

we are here: 
L=150 fb-1

where we are going: 
L=3000 fb-1

Experimental uncertainties will dramatically decrease in the future. Often reaching O(1%).

Run-II Run-IIIRun-I
HL-LHC

14
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Hard (perturbative) scattering process:
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d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW+↵3

Sd�N3LO + . . .
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Hard (perturbative) scattering process:
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d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW

d�̂NLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}
⇤
+

1

2s

Z
d�n+1|MNLO,R|2

NLO = B + V +R

Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ +

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠

︸ ︷︷ ︸

∼g6, virtual part
︸ ︷︷ ︸

∼g6, real part

Real part contributes whenever the additional parton is not resolved.

virtual one-loop matrix element

real tree-level matrix element

Perturbation theory

We need the amplitude squared:

At leading order (LO) only Born amplitudes contribute:
⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ ∼ g4

At next-to-leading order (NLO): One-loop amplitudes and Born amplitudes with an
additional parton.

2 Re

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠ +

⎛

⎝

⎞

⎠

∗⎛

⎝

⎞

⎠

︸ ︷︷ ︸

∼g6, virtual part
︸ ︷︷ ︸

∼g6, real part

Real part contributes whenever the additional parton is not resolved.

|MNLO,R|2

Re{MLO
M⇤

NLO,V}

MNLO,V

MNLO,R

•UV renormalisation ⇒ reduction of μR dependence

•soft/collinear cancellations+PDF renormalisation ⇒ reduction of μF dependence 

d�NLO

+↵3

Sd�N3LO + . . .
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double-virtual two-loop matrix element

real-virtual one-loop matrix element

double-real tree-level matrix elementMNNLO,RR

+
1

2s

Z
d�n+1

⇥
|MNLO,R|2 + 2Re|MNLO,RM⇤

NNLO,RV|
⇤
+

1

2s

Z
d�n+2|MNNLO,RR|2

/ ↵2
ΔNNLO MNNLO,RV

MNNLO,V

NNLO = B + V + V2 +  …

+ R + RV + RR

(
(
(

)
)
)

*
*

*( )

( )
( )

d�̂NNLO =
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}+ 2Re{MLOM⇤
NNLO,V}

⇤

d� = d�LO + ↵S d�NLO + ↵EW d�NLOEW+↵2

S d�NNLO + ↵2

EW
d�NNLOEW + ↵S↵EW d�NNLOQCDxEW+↵3

Sd�N3LO + . . .
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Theory frontier
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Theory frontier

#loops

#legs 
0

1

2

3

2→1 2→2 2→3 2→4 2→5 2→6 2→7

4

2→8

…

precision

experimental reality

computational 
complexity
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Theory frontier

#loops

#legs 
0

1

2

3

2→1 2→2 2→3 2→4 2→5 2→6 2→7

4

2→8

…

PS matching

EW corrections

Resummation
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Theory frontier

#loops

#legs 
0

1

2

3

2→1 2→2 2→3 2→4 2→5 2→6 2→7

4

2→8

…

Automated in NLO+PS MCs 
(aMG@NLO, Sherpa, Powheg,…)
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Theory frontier

#loops

#legs 
0

1

2

3

2→1 2→2 2→3 2→4 2→5 2→6 2→7

4

2→8

…

Automated in NLO+PS MCs 
(aMG@NLO, Sherpa, Powheg,…)

(public) NNLO fixed-order tools  
for all SM processes 
pp→H,V 
pp→VV,HV,HH,Vj,jj,QQ
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Theory frontier

#loops

#legs 
0

1

2

3

2→1 2→2 2→3 2→4 2→5 2→6 2→7

4

2→8

…

fixed-order frontier

Automated in NLO+PS MCs 
(aMG@NLO, Sherpa, Powheg,…)

(public) NNLO fixed-order tools  
for all SM processes
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Theory frontier

#loops

#legs 
0

1

2

3

2→1 2→2 2→3 2→4 2→5 2→6 2→7

4

2→8

…

Recent highlights at the theory frontier
• DY @ N3LO 
• DY @ NNLO QCD-EW 
• tt @ NNLO + PS, NNLO spin correlations 
• ɣɣɣ/ɣɣj/jjj @ NNLO  
• ttbb x decays @ NLO   
• gg→4l @ NLO+PS
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2→3 at NNLO 

•  over the last 1.5y the 2→3 NNLO barrier has been broken. 
•  pioneering new results:  

pp→ɣɣɣ pp→ɣɣj pp→jjj
[Chawdhry, Czakon, Mitov, Poncelet ’19]

[Abreu, Page, Pascual, Sotnikov ’20]

[Agarwal, Buccioni, v. Manteuffel, Tancredi ’21]

[Chawdhry, Czakon, Mitov, Poncelet ’21]
[Kallweit, Sotnikov, Wiesemann ’20]

[Czakon, Mitov, Poncelet ’21]

• thanks to recent progress on 5-point two-loop     
 integrals and amplitudes in massless QCD

[Gehrmann, Henn, Lo Presti ’18]
[Papadopoulos, Tommasini, Wever ’15]

[Gehrmann, Henn, Wasser, Zhang, Zoia ’18]

[Abreu, Ita, Moriello, Page, Tschernow ’20]

Figure 1. Kinematical region in the s12-channel in the (s23, s15)-plane for s12 = 1.0, s34 = 0.35,
s45 = 0.2 fixed.

Figure 2. Family of planar penta-box integrals computed in the main text. The numbers corre-
spond to indices i of ai in Ga1...a11 . Numerator factors are not shown in the figure.

3 Two-loop five-point planar master integrals

The family of penta-box integrals is defined as

Ga1,...a11 :=

Z
dDk1dDk2
(i⇡D/2)2

⇥

⇥
[�(k1 + p1 + p2 + p3 + p4)2]�a9

[�k2
1
]a1 [�(k1 + p1)2]a2 [�(k1 + p1 + p2)2]a3 [�(k1 + p1 + p2 + p3)2]a4

⇥

⇥
[�(k2 + p1)2]�a10

[�k2
2
]a5 [�(k2 + p1 + p2 + p3)2]a6 [�(k2 + p1 + p2 + p3 + p4)2]a7

⇥

⇥
[�(k2 + p1 + p2)2]�a11

[�(k1 � k2)2]a8
, (3.1)

with p2i = 0, i = 1, . . . 5, and
P

5

i=1
pµi = 0, and where a1, . . . a8 � 0 are propagators and

a9, a10, a11  0 numerator factors. See Figure 2.

– 6 –

[Badger, Chicherin, Gehrmann, et. al. ’19]

[Abreu, Febres Cordero, Ita, Page, Sotnikov ’21]

[Abreu, Dormans, Frebres Cordero, Ita, Page, Sotnikov ’19]
See talk by  

Lorenzo Tancredi  

on Thursday!
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pp→ɣɣɣ
[Chawdhry, Czakon, Mitov, Poncelet ’19]

[Kallweit, Sotnikov, Wiesemann ’20]
dσ/dmɣɣɣ [fb/GeV] pp→ɣɣɣ@LHC 8 TeV (ATLAS data)
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Figure 5: Invariant-mass distribution of the three-photon system (top left plot) and of each photon
pair compared to 8 TeV ATLAS data [37]. The colour coding corresponds to Figure 4.

activity increases. Since our results are not NNLO accurate any longer when requiring a jet, we
focus on distributions that involve only the kinematics of the colour singlet final state. We note,
however, that some observables intrinsically require jet activity in certain phase space regions,
which is reflected by vanishing LO predictions. All relevant features will be discussed using the
13 TeV results as a reference.

In Figure 8 we present various di↵erential distributions at 13 TeV, and we use a much finer binning
to better resolve certain features. The upper plots of Figure 8 show the azimuthal di↵erence
between the hardest and the second-hardest photon (���1,�2) as well as between the second-hardest
and the third-hardest photon (���2,�3). The hierarchy of the pT -ordered photons induces significant
di↵erences between the two cases. For LO kinematics, �1 and �2 need to recoil against each other
since �3 does not carry su�cient energy to provide the recoil when the momenta of those two harder
photons align. Correspondingly, �2 and �3 cannot be produced in back-to-back configurations

10

2→3 at NNLO 
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Figure 1. Absolute pT (��) (left) and m(��) (right) di↵erential distributions. Shown are the predic-
tions in LO (green), NLO (blue), NNLO (red) QCD. The colored bands around the central scales are
from 7-point scale variation. The grey band shows the estimated Monte Carlo integration error in each
bin. The lower panel shows the same distributions but relative to the NLO central scale prediction.

Figure 2. As in fig. 1 but for the m(��) distribution subjected to di↵erent pT (��) cuts: pT (��) > 50
GeV (left), pT (��) > 100 GeV (center) and pT (��) > 200 GeV (right).

the invariant mass of the two photons m(��), the angle between the two photons in the

Collins-Soper frame �CS , the absolute di↵erence in rapidities of the two photons �y(��) =

|y(�1)�y(�2)|, the azimuthal angle between the two photons ��(��) and the absolute rapid-

ity of the photon pair |y(��)|. We also calculate the NNLO QCD corrections to the following

two-dimensional distributions: m(��) ⌦ pT (��) and �CS ⌦ m(��).

We first discuss the pT (��) di↵erential distribution which is of central interest to this

work. The distribution is shown in fig. 1. As can be seen from this figure, the NLO QCD

correction is very significant relative to the LO one. In particular, the scale uncertainty bands

at LO and NLO do not overlap anywhere. This behavior is easy to understand based on the

properties of inclusive diphoton production through NNLO. Clearly, a reliable prediction of

this observable requires the inclusion of, at least, the NNLO QCD corrections.

As can be seen from fig. 1 the inclusion of the NNLO corrections has a major stabilizing

– 4 –

pp→ɣɣj
[Chawdhry, Czakon, Mitov, Poncelet ’21]

• significant NNLO/NLO corrections 
• improved data/theory agreement at NNLO

• NNLO mandatory due to large NLO/LO corrections

gg→ɣɣg

➡precision probes of QCD dynamics 

‣ [Badger, Brønnum-Hansen,  
Chicherin et. al. ’21]
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pp→jjj at NNLO 

[Czakon, Mitov, Poncelet ’21]

➡ clear stabilisation of perturbative expansion at NNLO   

"Tour de force in Quantum Chromodynamics”
2

we approximate the finite two-loop contribution

R
(2)(µ2

R) = 2 Re
h
M

†(0)
F

(2)

i
(µ2

R) +
��F (1)

��2(µ2

R)

⌘ R
(2)(s12) +

4X

i=1

ci ln
i

✓
µ
2

R

s12

◆
, (1)

in the following way

R
(2)(s12) ⇡ R

(2)l.c.(s12) , (2)

where R
(2)l.c.(s12) denotes its leading-colour approxima-

tion. It is taken from the C++ implementation provided
in ref. [27].

Eq. (2) above is the only approximation made in the
present computation. We have checked that the overall
contribution of R

(2)l.c.(s12) is about O(2%) and we ex-
pect the missing pure virtual contributions beyond the
leading-colour approximations to be further suppressed.

We consider production of two and three jets at the
LHC with a center of mass energy of 13 TeV with jet re-
quirements adapted from experimental phase space defi-
nitions like, for example, ref. [6]. Jets are clustered using
the anti-kT algorithm [36] with a radius of R = 0.4 and
required to have transverse momentum pT (j) of at least
60 GeV and rapidity y(j) fulfilling |y(j)| < 4.4. All jets
passing this requirement are sorted and labeled according
to their pT from largest to smallest. Among those jets we
require the two leading jets to fulfill pT (j1)+pT (j2) > 250
GeV in order to avoid large higher-order corrections in
two-jet production close to the phase space boundary.
We denote by d� the di↵erential cross section for at least
n jets fulfilling the above criteria. Its expansion in ↵S

reads

d�n = d�
(0)

n + d�
(1)

n + d�
(2)

n + O
�
↵
n+3

S

�

d�
LO

n = d�
(0)

n ,

d�
NLO

n = d�
(0)

n + d�
(1)

n ,

d�
NNLO

n = d�
(0)

n + d�
(1)

n + d�
(2)

n . (3)

We quantify the size of (N)NLO corrections with the
help of the following ratios of di↵erential cross sections

K
NNLO =

d�
NNLO

d�NLO
and K

NLO =
d�

NLO

d�LO
. (4)

The pdf set NNPDF31 nnlo as 0118 is used for all per-
turbative orders. The renormalization µR and factoriza-
tion µF scales are set equal µR = µF = µ0. The central
scale µ0 is chosen as ĤT /n for n = 1, 2, where

ĤT =
X

i2partons

pT,i . (5)

The sum in the above equation is over all final state par-
tons, irrespective of the jet requirements. Previous stud-
ies of perturbative convergence in jet production support
this event-based dynamic scale [37, 38]. Unless stated
otherwise, uncertainties from missing higher orders in
perturbation theory are estimated by independent vari-
ation of µF and µR by a factor of 2 around the central
scale µ0, subject to the constraint 1/2  µR/µF  2.
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FIG. 1: The three panels show the ith leading jet transverse
momentum pT (ji) for i = 1, 2, 3 for the production of (at
least) three jets. LO (green), NLO (blue) and NNLO (red) are
shown for the central scale (solid line). 7-point scale variation
is shown as a coloured band. The grey band corresponds to
the uncertainty from Monte Carlo integration.

III. RESULTS

We begin by discussing typical jet observables at
hadron colliders. In fig. 1 we show di↵erential cross sec-
tions for three-jet production with respect to the trans-
verse momentum pT (ji) of the ith leading jet. In all his-
tograms the outer bins do not include over- or under-flow
events.

The NNLO K-factor of the pT (j1) distribution is not
flat: at small pT (j1) one observes negative NNLO correc-
tions of about �10%, while at large pT (j1) the corrections
tend to be small and positive. The change in scale depen-
dence for this observable when going from NLO to NNLO
is also dependent on pT (j1). One observes a rather signif-
icant reduction at large pT (j1) (from about 7% at NLO to
about 2% at NNLO) while at small pT (j1), where the K-
factor is largest, the scale dependence slightly increases
(from about 4% at NLO to about 5% at NNLO). In-
terestingly, the scale dependence at NLO and NNLO be-
haves rather di↵erently: at NLO it steadily increases with
pT (j1) while at NNLO it decreases with pT (j1). Through-
out this work we define the scale dependence as one half
of the width of the scale uncertainty band. This is rel-
evant for cases where the scale variation is asymmetric,
as for example is the case of pT (j1) at NLO.

The pT (j2) distribution has a similar pattern of NNLO
corrections: relative to NLO they are negative, about

4

FIG. 4: The top two panels show R3/2(pT (j1)) (in absolute
and as ratio to NLO) and the bottom two panels R3/2(HT ).
The colours are the same as in fig. 1.

factor slightly decreases for large momenta, however, it
is always fully contained within the NLO scale band. An
important observation is that the NNLO scale band is
very small in comparison to NLO, reducing it from about
10% down to 3%.

Next we consider the lower two panels in fig. 4, where
we show the ratio R3/2(HT ) for a central scale µ0 =
HT /2. This observable behaves similarly to R3/2(pT (j1))
albeit with a slightly larger scale dependence. The re-
duction in the scale uncertainty when going from NLO
to NNLO is of particular importance since this observ-
able is used experimentally for measurements of ↵S [5].
The leading source of perturbative uncertainty in this
data–theory comparison is the scale dependence. The
pdf dependence, which is not computed in this work, is
expected to largely cancel out in the ratio.

Jet rates are typically measured in slices of jet rapidity.
To demonstrate how our calculation performs in this sit-
uation, we divide the phase space in slices of the rapidity
di↵erence between the two leading jets

y
⇤ = |y(j1) � y(j2)|/2 , (8)
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FIG. 5: The three panels show R3/2(HT , y
⇤), in each panel a

di↵erent slice in y
⇤ as ratio to NLO. The colours are the same

as in fig. 1.

and define the ratio of the two- and three-jet rates as

R3/2(HT , y
⇤) =

d2
�3/dHT /dy

⇤

d2�2/dHT /dy⇤ . (9)

The NNLO prediction for this cross section ratio can
be found in fig. 5 . The prediction is shown relative to the
NLO one. The NNLO correction is negative across the
full kinematic range and, overall, behaves very similarly
to the one for the rapidity-inclusive ratio R3/2(HT ). This
remains the case as y

⇤ increases, at least in the range of
rapidities considered here.

IV. CONCLUSIONS

In this work we present for the first time NNLO-
accurate predictions for three-jet rates at the LHC. We
compute di↵erential distributions for typical jet observ-
ables like HT and the transverse momentum of the ith
leading jet, i = 1, 2, 3, as well as di↵erential three-to-two
jet ratios. Scale dependence is the main source of theoret-
ical uncertainty for this process at NLO, and it gets sig-
nificantly reduced after the inclusion of the NNLO QCD
corrections. Notably, the three-to-two jet ratios stabilize
once the second-order QCD corrections are accounted for.

A central goal of the present work is to demonstrate
the feasibility of three-jet hadron collider computations
with NNLO precision. With this proof-of-principle goal
attained, one can now turn one’s attention to the broad
landscape of phenomenological applications for three-
jet production at the LHC. Examples include studies of
event-shapes [6, 39, 40], determination of the running
of the strong coupling constant ↵s through TeV scales
and resolving the question of scale setting in multi-jet
production. Another major benefit from having NNLO–
accurate predictions is the reliability of the theory uncer-
tainty estimates.

R3/2
pT,j

➡ opens the door to aS(μ) determination up to TeV scale
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FIG. 2 The cross section as a function of the invariant mass Q2 of the lepton pair for small (left) and large (right)
values of Q.

the central scales). We note that this behaviour does not
depend on our choice of the central scale, but we observe
the same behaviour when the central scale is chosen as
Q/2. Since this is a new feature which has not been ob-
served so far for inclusive N3LO cross section, we analyse
it in some detail.

Fig. 3 shows the dependence of the cross section for an
invariant mass Q = 100 GeV on one scale with the other
held fixed at the central scale Q = 100 GeV. The bands
are again obtained by varying the scale by a factor of
two up and down around the central scale. We see that
in both cases the NNLO and N3LO bands do not over-
lap. Furthermore, we see that for the µR dependence the
width of the band is substantially reduced when going
from NNLO to N3LO. For the µF dependence, however,
the width of the band is increasing from NNLO to N3LO.
We note that this statement depends on the choice of the
value of Q2 considered as well as the centre-of-mass en-
ergy of the hadron collider. It would be interesting in
how far this observation is related to the missing N3LO
PDFs (keeping in mind that in that case one could not
disentangle completely the PDF-TH and scale uncertain-
ties anymore).

Fig. 4 shows the relative contribution of the di↵erent
partonic channels as a function of the invariant mass Q2

to the N3LO correction of the DY cross section. We see
that the cross section is dominated by the qq̄, qg and gg
channels. While the qg channel gives a large and pos-
itive contribution, the qq̄ channel (and to a lesser ex-
tend also the gg channel) gives a negative contribution
which largely cancels the contribution from the qg chan-
nel. The same cancellation happens already in the case
of the NNLO corrections to an even larger extent. Given
the sizeable cancellation of di↵erent partonic initial state
contributions, small numerical changes in the parton dis-
tribution functions will have an enhanced e↵ect on the
prediction of the DY cross section. Consequently, esti-
mating and improving on the sources of uncertainties re-
lated to parton distribution functions considered in Fig. 1
is of great importance.

CONCLUSIONS

We have presented for the first time the complete com-
putation of the N3LO corrections in QCD for the pro-
duction of a lepton pair from a virtual photon. Our main
findings are percent level corrections to the hadronic cross
section and an overall reduction of dependence on the
perturbative scales. The size of this corrections is con-
sistent with N3LO corrections to Higgs boson production
in gluon-fusion [17–19] and bottom-quark-fusion [20] and
indicates the importance of N3LO corrections to LHC
processes for phenomenology conducted at the percent
level.

In the region of small invariant masses where the con-
tribution from the Z boson is small, Q . 50 GeV, the
photon contribution computed here is the dominant part
of the cross section. For other kinematic regions we ex-
pect the K-factor of the Z boson contribution to behave
qualitatively very similarly to the photon contribution
and our results provide essential information. We see
from Fig. 2 that our computation substantially reduces
the dependence of the cross section on the renormalisa-
tion and factorisation scales. In contrast to the correc-
tions to Higgs boson production, however, the shift of
the predicted value of the DY cross section due to the in-
clusion of N3LO corrections is not contained in the naive
scale variation bands of NNLO predictions for all values
of Q. We emphasise that this should not be interpreted
as an indication of a breakdown of perturbative QCD,
but rather as a sign that uncertainty estimates based on
a purely conventional variation of the scales should be
taken with a grain of salt. Moreover, we observe an intri-
cate pattern of large cancellations of contributions from
di↵erent partonic initial states at NNLO and N3LO. This
implies a large sensitivity of the cross section on rela-
tively small shifts in parton distribution functions. In
combination with the fact that the DY process is a key
ingredient for the determination of PDFs, this motivates
to push for parton distributions determined from N3LO
cross sections in the future. It also hints at am intri-
cate entanglement of PDFs and the structure of QCD
cross sections, so that the uncertainty estimate obtained
from scale variation cannot be completely disentangled
from the PDF-TH uncertainties. The perturbative un-
certainty should rather be seen as the combination of

of the proton into quarks and gluons. If these cancellations play a role in the observed

perturbative convergence pattern, then it implies that one cannot decouple the study of

the perturbative convergence from the structure of the proton encoded in the PDFs. We

will return to this point below, when we discuss the e↵ect of PDFs on our cross section

predictions.
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Figure 5: The cross sections for producing a W+ (left) or W� (right) as a function of

the virtuality Q. The uncertainty bands are obtained by varying µF and µR around the

central scale µcent = Q. The dashed magenta line indicates the physical W boson mass,

Q = mW .

Figure 5 shows the production cross section for an o↵-shell W boson normalised to the

prediction at N3LO for a larger range of virtualities (Q  2TeV). We see that for larger

values of the virtuality (Q > 550GeV) the bands derived from scale variation at NNLO

and N3LO start to overlap. We also observe a more typical shrinking of the scale variation

bands as well as a small correction at N3LO.

Figure 6: The cross sections for producing a lepton-neutrino pair via an o↵-shell W boson

as a function of the invariant mass of the final state, or equivalently the virtuality of the

W boson, cf. eq. (2.1).

Figure 6 shows the nominal production cross section of a lepton-neutrino pair at the

LHC at 13 TeV centre of mass energy, as defined in eq. (2.1).

Figure 7 shows the variation of K-factors as a function of the energy of the hadron

collider for Q = 100 GeV. The orange, blue and red bands correspond to predictions

with the perturbative cross section truncated at NLO, NNLO and N3LO, and the size

of the band is obtained by performing a 7-point variation of (µF , µR) around the central

scale µcent = Q. We observe that the NLO, NNLO and N3LO K-factors are relatively

independent of the centre of mass energy. Furthermore, we see that the bands due to scale

– 8 –

Ɣ*

W+

➡ Very similar behaviour in CC and NC DY
➡ At large Q scale variations bands are  
  nicely overlapping, i.e. convincing convergence  
  of perturbative series.
➡ However, for Q < 400 GeV NNLO and N3LO  
  do not overlap! (Here: 𝜹N3LO~1-2%) 
➡Origin: quite large cancellation of quark and  
             gluon initial state.
➡Might be compensated by currently  
  missing N3LO PDFs

Note: very precise measurements of high-mass DY
          can be used to constrain BSM,  
          see Farina et. al. ’16  (1609.08157)  

[Duhr, Dulat, Mistlberger, ’20-1, ’20-2]
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FIG. 2: Inclusive N3LO QCD corrections to total
cross section for Drell-Yan production through a vir-
tual photon. In the bottom panel we plot the ratio to

the analytic calculation in [14].

therefore it is important to choose a su�ciently small qcutT
to suppress such power corrections.

Fig. 2 demonstrates the SCET+NNLOJET predictions
being independent on q

cut
T for values below 1 GeV. In

fact, for all partonic channels except qg, the cross section
predictions become flat and therefore reliable already at
q
cut
T ⇠ 5 GeV. It is only the qg channel that requires a
much smaller q

cut
T , indicating more sizeable power cor-

rections than in other channels. A more detailed under-
standing of this feature could become useful when apply-
ing qT -subtraction to more complicated final states.

Also shown in the upper panel of Fig. 2 in dashed
lines are the inclusive predictions from [14], decomposed
into di↵erent partonic channels. We observe an excellent
agreement at small-qT region with a detailed compari-
son given in Tab. I. This agreement provides a fully in-
dependent confirmation of the analytic calculation [14],
and lends strong support to the correctness for our qT -
subtraction-based calculation. In the bottom panel of
Fig. 2, we plot the ratio between di↵erent partonic chan-
nels to the total inclusive N3LO corrections. We ob-
serve large cancellation between qg channel (blue) and
qq̄ channel (orange). While the inclusive N3LO correc-
tion is about �8 fb, the qg channel alone can be as large
as �15.3 fb. Similar cancellations between qg and qq̄

channel can already be observed at NLO and NNLO.
The numerical smallness of the NNLO corrections (and
of its associated scale uncertainty) is due to these cancel-
lations, which may potentially lead to an underestimate
of theory uncertainties at NNLO.

In Fig. 3 we show for the first time the N3LO pre-
dictions for the Drell-Yan di-lepton rapidity distribution,
which constitutes the main new result of this letter. Pre-

Fixed Order �pp!�⇤(fb)

LO 339.62+34.06
�37.48

NLO 391.25+10.84
�16.62

NNLO 390.09+3.06
�4.11

N3LO 382.08+2.64
�3.09 from [14]

N3LO only qT -subtraction Results from [14]

qg �15.32(32) �15.29

qq̄ + qQ̄ +5.08(11) +4.97

gg +2.17(6) +2.12

qq + qQ +0.09(13) +0.17

Total �7.98(36) �8.03

TABLE I: Inclusive cross sections with up to N3LO
QCD corrections to Drell-Yan production through
a virtual photon. N3LO results are from the qT -
subtraction method (qcutT = 0.63 GeV) and from the
analytic calculation in [14]. Cross sections at central
scale of Q = 100 GeV are presented together with
7-point scale variation. Numerical integration errors

from qT -subtraction are indicated in brackets.

FIG. 3: Di-lepton rapidity distribution from LO to
N3LO. The colored bands represent theory uncer-
tainties from scale variations. The bottom panel is
the ratio of the N3LO prediction to NNLO, with dif-

ferent cuto↵ q
cut
T .

dictions of increasing perturbative orders up to N3LO
are displayed. We estimate the theory uncertainty band
on our predictions by independently varying µR and µF

around 100 GeV with factors of 1/2 and 2 while elimi-
nating the two extreme combinations (7-point scale vari-
ation). With large QCD corrections from LO to NLO,
the NNLO corrections are only modest and come with
scale uncertainties that are significantly reduced [5, 7, 8].
However, as has been observed for the total cross sec-
tion, the smallness of NNLO corrections is due to cancel-

[Chen, Gehrmann, Glover, et. al., ’21]

‣ 7-pt scale variation might not be good enough to  
estimate perturbative uncertainties at the percent level.

‣ method: qT subtraction at N3LO:  
 requires V+jet at NNLO

‣ N3LO/NNLO: -2% (validation of inclusive computation)

‣ N3LO not covered by NNLO band
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Mixed QCD-EW corrections to DY production: NC

32

MIXED NNLO QCD EW TO DRELL-YAN×

16

‣ splitting functions    [de Florian, Sborlini, Rodrigo ’16]  

‣ 2-loop integrals       [Bonciani, DiVita, Mastrolia, Schubert ’16]  [Heller, von Manteuffel, Schabinger ’19]                                 


[Mehedi Hasan, Schubert ’20]


‣ on-shell Z, incl. QCD QED   [de Florian, Der, Fabre ’18]


‣ on-shell Z, diff. QCD QED    [Delto, Jaquier, Melnikov, Röntsch ’19] 

‣ on-shell Z, incl. QCD EW     [Bonciani, Buccioni, Rana, Vicini ’20]

×

×

×

[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch ’20]
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‣ precision important in the resonance region    expand around ⇒ M2
V

non-factorizable on-shell production  decay× on-shell production
[Dittmaier, AH, Schwinn ’14] [Dittmaier, AH, Schwinn ’15]

‣ negligible ‣ expected: dominant ‣ last piece missing

• Complete O(αs α) corrections still beyond currently technology  
• For precision in resonant region: expand around M2 

[Dittmaier, Huss, Schwinn, ’14] [Dittmaier, Huss, Schwinn, ’15]
[Buccioni, Caola, Delto, Jaquier, Melnikov, Röntsch, ’20]
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over  QCD QED   (production only) 
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‣ sizeable effects from  QED  (FSR) 

‣ corrections up to a  per-cent 

‣ central :  competes with    
NNLO QCD  (accidental cancellation)
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For production only
‣ QCD×weak dominant over QCD×QED
‣ net effect: few per-mille 

-

See talk by  

   Raoul Röntsch

tomorrow

→ impact on mW 

non-factorizable prod x decay genuine QCD-EW in prod 
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Mixed QCD-EW corrections to NC-DY production:  
beyond the pole approximation

33

‣ Comparison against naive factorised NLO QCD x NLO EW ansatz: fail at the 5-10% level
‣ pole approximation vs. full computation: agree below the percent level   

See talks by  

   Luca Buonocore

tomorrow[Bonciani, Buonocore, Grazzini, Kallweit et. al.  ’21]
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� [pb] �LO �(1,0) �(0,1) �(2,0) �(1,1)

qq̄ 809.56(1) 191.85(1) �33.76(1) 49.9(7) �4.8(3)

qg — �158.08(2) — �74.8(5) 8.6(1)

q(g)� — — �0.839(2) — 0.084(3)

q(q̄)q0 — — — 6.3(1) 0.19(0)

gg — — — 18.1(2) —

�� 1.42(0) — �0.0117(4) — —

tot 810.98(1) 33.77(2) �34.61(1) �0.5(9) 4.0(3)

Table I. The di↵erent perturbative contributions to the fidu-
cial cross section (see Eq. (2)). The breakdown into the vari-
ous partonic channels is also shown (see text).
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Figure 1. Complete O(↵S↵) correction to the di↵erential
cross section d�(1,1) in the anti-muon pT compared to the
corresponding result in the pole approximation and to the
factorised approximation d�(1,1)

fact
. The top panels show the ab-

solute predictions, while the central (bottom) panels display
the O(↵S↵) correction normalized to the LO (NLO QCD) re-
sult. For the full result the ratios also display our estimate
of the numerical uncertainties, obtained as described in the
text.

ject to large cancellations between the various partonic
channels. The NLO QCD corrections amount to +4.2%
with respect to the LO result, while the NLO EW cor-
rections contribute �4.3%. Also the NNLO QCD cor-
rections are subject to large cancellations, and give an
essentially vanishing contribution within the numerical
uncertainties. The newly computed QCD–EW correc-
tions amount to +0.5% with respect to the LO result.

In Fig. 1 we present our result for the O(↵S↵) correc-
tion as a function of the anti-muon pT . The left panels
depict the region around the Z peak, and the right pan-
els the high-pT region. In the main panels we show the
absolute correction d�(1,1)/dpT , while the central (bot-
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Figure 2. As Fig. 1, but for the di-muon invariant mass.

tom) panels display the correction normalised to the LO
(NLO QCD) result. Our results for the complete O(↵S↵)
correction are compared with those obtained in two ap-
proximations. The first approximation consists in com-
puting the finite part of the two-loop virtual amplitude
in the pole approximation, suitably reweighted with the
exact squared Born amplitude. This approach precisely
follows that adopted for the charged-current DY process
in Ref. [49] (see Eq. (14) therein for the precise defini-
tion). The pole approximation, which includes factoris-
able and non-factorisable [44] contributions, requires the
QCD–EW on-shell form factor of the Z boson [40]. The
second approximation is based on a fully factorised ap-
proach for QCD and EW corrections, where we exclude
photon-induced processes throughout (see Ref. [45, 49]
for a detailed description). We see that the result ob-
tained in the pole approximation is in perfect agreement
with the exact result. This is due to the small contri-
bution of the two-loop virtual to the computed correc-
tion, as observed also in the case of W production [49].
Our result for the O(↵S↵) correction in the region of
the peak is reproduced relatively well by the factorised
approximation. Beyond the Jacobian peak, this approx-
imation tends to overshoot the complete result, which is
consistent with what was observed in Refs. [45, 49]. As
pT increases, the (negative) impact of the mixed QCD–
EW corrections increases, and at pT = 500GeV it reaches
about �60% with respect to the LO prediction and �15%
with respect to the NLO QCD result. The factorised ap-
proximation describes the qualitative behaviour of the
complete correction reasonably well, also in the tail of
the distribution, but it overshoots the full result as pT
increases.

In Fig. 2 we show our result for the O(↵S↵) correction
as a function of the di-muon invariant mass mµµ. The
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� [pb] �LO �(1,0) �(0,1) �(2,0) �(1,1)

qq̄ 809.56(1) 191.85(1) �33.76(1) 49.9(7) �4.8(3)

qg — �158.08(2) — �74.8(5) 8.6(1)

q(g)� — — �0.839(2) — 0.084(3)

q(q̄)q0 — — — 6.3(1) 0.19(0)

gg — — — 18.1(2) —

�� 1.42(0) — �0.0117(4) — —

tot 810.98(1) 33.77(2) �34.61(1) �0.5(9) 4.0(3)

Table I. The di↵erent perturbative contributions to the fidu-
cial cross section (see Eq. (2)). The breakdown into the vari-
ous partonic channels is also shown (see text).
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Figure 1. Complete O(↵S↵) correction to the di↵erential
cross section d�(1,1) in the anti-muon pT compared to the
corresponding result in the pole approximation and to the
factorised approximation d�(1,1)

fact
. The top panels show the ab-

solute predictions, while the central (bottom) panels display
the O(↵S↵) correction normalized to the LO (NLO QCD) re-
sult. For the full result the ratios also display our estimate
of the numerical uncertainties, obtained as described in the
text.

ject to large cancellations between the various partonic
channels. The NLO QCD corrections amount to +4.2%
with respect to the LO result, while the NLO EW cor-
rections contribute �4.3%. Also the NNLO QCD cor-
rections are subject to large cancellations, and give an
essentially vanishing contribution within the numerical
uncertainties. The newly computed QCD–EW correc-
tions amount to +0.5% with respect to the LO result.

In Fig. 1 we present our result for the O(↵S↵) correc-
tion as a function of the anti-muon pT . The left panels
depict the region around the Z peak, and the right pan-
els the high-pT region. In the main panels we show the
absolute correction d�(1,1)/dpT , while the central (bot-

1000800600400200

0

�0.5

�1.0

�1.5

�2.0

mµµ [GeV]
1000800600400200

0

�0.5

�1.0

�1.5

�2.0

mµµ [GeV]
1000800600400200

0

�0.5

�1.0

�1.5

�2.0

mµµ [GeV]

0

�0.5

�1.0

�1.5

�2.0

0

�0.5

�1.0

�1.5

�2.0

10�2

10�3

10�4

10�5

10�6

�d�(1,1)
fact

�d�(1,1)
PA

�d�(1,1)

p
s = 14TeV

10�2

10�3

10�4

10�5

10�6

p
s = 14TeV

110100908070

+10

+5

0

�5

d
�
/d

�
Q
C
D

N
L
O
[%

]

mµµ [GeV]
110100908070

+10

+5

0

�5

d
�
/d

�
Q
C
D

N
L
O
[%

]

mµµ [GeV]
110100908070

+10

+5

0

�5

d
�
/d

�
Q
C
D

N
L
O
[%

]

mµµ [GeV]

+10

+5

0

�5d
�
/d

�
L
O
[%

] +10

+5

0

�5d
�
/d

�
L
O
[%

]

1.0

0.5

0

�0.5

�1.0

�1.5

�2.0 d�(1,1)
fact

d�(1,1)
PA

d�(1,1)

d
�
/d

m
µ
µ
[p
b
/G

eV
]

pp ! µ�µ+ +X

1.0

0.5

0

�0.5

�1.0

�1.5

�2.0

d
�
/d

m
µ
µ
[p
b
/G

eV
]

pp ! µ�µ+ +X

Figure 2. As Fig. 1, but for the di-muon invariant mass.

tom) panels display the correction normalised to the LO
(NLO QCD) result. Our results for the complete O(↵S↵)
correction are compared with those obtained in two ap-
proximations. The first approximation consists in com-
puting the finite part of the two-loop virtual amplitude
in the pole approximation, suitably reweighted with the
exact squared Born amplitude. This approach precisely
follows that adopted for the charged-current DY process
in Ref. [49] (see Eq. (14) therein for the precise defini-
tion). The pole approximation, which includes factoris-
able and non-factorisable [44] contributions, requires the
QCD–EW on-shell form factor of the Z boson [40]. The
second approximation is based on a fully factorised ap-
proach for QCD and EW corrections, where we exclude
photon-induced processes throughout (see Ref. [45, 49]
for a detailed description). We see that the result ob-
tained in the pole approximation is in perfect agreement
with the exact result. This is due to the small contri-
bution of the two-loop virtual to the computed correc-
tion, as observed also in the case of W production [49].
Our result for the O(↵S↵) correction in the region of
the peak is reproduced relatively well by the factorised
approximation. Beyond the Jacobian peak, this approx-
imation tends to overshoot the complete result, which is
consistent with what was observed in Refs. [45, 49]. As
pT increases, the (negative) impact of the mixed QCD–
EW corrections increases, and at pT = 500GeV it reaches
about �60% with respect to the LO prediction and �15%
with respect to the NLO QCD result. The factorised ap-
proximation describes the qualitative behaviour of the
complete correction reasonably well, also in the tail of
the distribution, but it overshoots the full result as pT
increases.

In Fig. 2 we show our result for the O(↵S↵) correction
as a function of the di-muon invariant mass mµµ. The



Top-quark spin correlations at NNLO
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•Small corrections and uncertainties in 
leptonic observables

•Excellent data-theory agreement 
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Figure 9. As in fig. 7 but for the m(`¯̀), pT (`¯̀) and y(`¯̀) distributions.

factors while the NNLO corrections are small relative to the NLO ones and typically about

several percent. The only exception is the ��(`¯̀) distribution for large values of m(`¯̀)

where the NNLO/NLO K-factor reaches 10%-20%. The size of the scale uncertainty at

NNLO is much smaller than the NLO scale variation. In all bins the uncertainty of the

NNLO theory prediction is comparable to or smaller than the experimental uncertainty.

In almost all cases we find very good description of data with NNLO QCD. Only in

a few bins (with large y(`¯̀) and m(`¯̀)), which are exhibiting relatively large experimental

– 25 –

•Might allow for an additional handle on Mtop
•Need to understand systematics at small mll  
(EW corrections, finite width effects, …)  
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Top-quark pair production at NNLO+PS See talk by  

  Javier Mazzitelli

yesterday[Mazzitelli, Monni, Nason, Re, Wiesemann, Zanderighi `20] 
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FIG. 1. Distribution in the rapidity di↵erence between the tt̄ pair and the leading jet (�ytt̄,j1), in the rapidity (ytav ) and the
average transverse-momentum (pT,tav ) of the top and the anti-top, as well as in the rapidity (ytt̄), in the invariant mass (mtt̄)
and in the transverse momentum (pT,tt̄) of the tt̄ system. Predictions are shown for MiNNLOPS (blue, solid), MiNLO0 (black,
dashed) and at NNLO (red, dashed). The black data points represent the CMS measurement at 13TeV of Ref. [98], where the
ytav and pT,tav distributions have been obtained with leptonically decaying top quarks.
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• Requires highly non-trivial extension of MiNNLOPS method to final state radiation 
• Very good agreement between MiNNLOPS and NNLO (and comparable uncertainties)
• NNLO accuracy mandatory given data accuracy
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Figure 3: Di�erential distributions at LO and NLO for pp æ µ
+

‹µe+
‹eb̄bb̄b: transverse

momentum of the two bottom quarks not originating from a top quark, and invariant mass of
the two bottom quarks not originating from a top quark.

originating from a top quark by maximising the likelihood function L, defined as a product of
two Breit–Wigner distributions corresponding to the top-quark and antitop-quark propagators,

Lij = 1
1
p

2

µ≠‹̄µbi
≠ m

2
t

22

+ (mt�t)2

1
1
p

2

e+‹ebj
≠ m

2
t

22

+ (mt�t)2

, (3.4)

where the momenta pabc are defined as pabc = pa + pb + pc. The combination of bottom quarks
{bi, bj} that maximises this function defines the two bottom quarks originating from top
quarks. From the 2 or 3 bottom quarks left in the event, the two hardest ones, i.e. those with
highest transverse momenta, define the bottom–antibottom pair that does not originate from
the top-quark decay and whose transverse-momentum and invariant-mass distributions are
shown in Figure 3. The distribution in the transverse momentum of the two bottom quarks
not coming from a top decay shows rather stable corrections around 100% apart from low
transverse momentum, where the QCD corrections reach 110%. The di�erence between the
full calculation and the one in DPA does not show significant variations over the phase space
neither at LO nor at NLO QCD but is largely inherited from the fiducial cross section. In
particular, the di�erence between the tt-DPA and the full calculation at NLO is within the
integration errors, as for all following distributions. The distribution in the invariant mass of
the bottom–antibottom pair, on the other hand, exhibits larger variations between the full
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and projecting the top-quark momenta on shell, apart from those in the denominators of
the resonant propagators, which are kept o� shell. At LO, the tt-DPA is simply based on
the doubly-top-resonant contributions in the Born matrix element. At NLO, we apply the
DPA only to the virtual contributions. This implies that we include the full Born and real-
radiation contributions and take into account non-factorisable virtual contributions following
the algorithm of Refs. [57–59] applied to QCD. At LO, such an approximation is more accurate
than an on-shell computation as full spin correlations, o�-shell propagators, as well as the
full phase space are taken into account. Moreover, at NLO the approximation is applied
only to the virtual corrections where also the doubly-resonant non-factorisable corrections are
included, while all other contributions of orders O

!
–

4
s –

4
"

and O
!
–

5
s –

4
"

are kept exact. In the
tt-DPA calculation, W and Z bosons are treated in the complex-mass scheme.

Note that as in the original DPA computations [51] in the past computations with
MoCaNLO [13, 52, 60] the DPA (retaining resonant contributions and applying the on-shell
projection) has also been applied to the I-operator in the integrated dipoles. It has been
noticed [61] that when done in combination with small –dipole parameter [62], this tends
to worsen the agreement with the full computation, as it treats large contributions in the

– 5 –

[Denner, Lang, Pellen `20] g

g

b

b̄

t

t̄

b

b̄

W e+

⌫e

W µ�

⌫̄µ

(a) Doubly top resonant

g

g

b

b̄

t

t

b

b̄

W e+

⌫e

W µ�

⌫̄µ

(b) Doubly top resonant

g

g

b

b̄

t

t

b

b̄

W
e+

⌫e

W
µ�

⌫̄µ

(c) Doubly top resonant

g

g

b

b̄

t
b

b̄

W e+

⌫e

W µ�

⌫̄µ

(d) Singly top resonant

g

g

b

b̄

t
b

b̄

W
e+

⌫e

W µ�

⌫̄µ

(e) Singly top resonant

g

g

b

b̄

b

b̄

W e+

⌫e

W µ�

⌫̄µ

(f) Non top resonant

Figure 1: Sample LO diagrams for the partonic channel gg æ µ
≠

‹̄µe+
‹eb̄bb̄b.

and projecting the top-quark momenta on shell, apart from those in the denominators of
the resonant propagators, which are kept o� shell. At LO, the tt-DPA is simply based on
the doubly-top-resonant contributions in the Born matrix element. At NLO, we apply the
DPA only to the virtual contributions. This implies that we include the full Born and real-
radiation contributions and take into account non-factorisable virtual contributions following
the algorithm of Refs. [57–59] applied to QCD. At LO, such an approximation is more accurate
than an on-shell computation as full spin correlations, o�-shell propagators, as well as the
full phase space are taken into account. Moreover, at NLO the approximation is applied
only to the virtual corrections where also the doubly-resonant non-factorisable corrections are
included, while all other contributions of orders O

!
–

4
s –

4
"

and O
!
–

5
s –

4
"

are kept exact. In the
tt-DPA calculation, W and Z bosons are treated in the complex-mass scheme.

Note that as in the original DPA computations [51] in the past computations with
MoCaNLO [13, 52, 60] the DPA (retaining resonant contributions and applying the on-shell
projection) has also been applied to the I-operator in the integrated dipoles. It has been
noticed [61] that when done in combination with small –dipole parameter [62], this tends
to worsen the agreement with the full computation, as it treats large contributions in the

– 5 –

g

g

b

b̄

t

t̄

b

b̄

W e+

⌫e

W µ�

⌫̄µ

(a) Doubly top resonant

g

g

b

b̄

t

t

b

b̄

W e+

⌫e

W µ�

⌫̄µ

(b) Doubly top resonant

g

g

b

b̄

t

t

b

b̄

W
e+

⌫e

W
µ�

⌫̄µ

(c) Doubly top resonant

g

g

b

b̄

t
b

b̄

W e+

⌫e

W µ�

⌫̄µ

(d) Singly top resonant

g

g

b

b̄

t
b

b̄

W
e+

⌫e

W µ�

⌫̄µ

(e) Singly top resonant

g

g

b

b̄

b

b̄

W e+

⌫e

W µ�

⌫̄µ

(f) Non top resonant

Figure 1: Sample LO diagrams for the partonic channel gg æ µ
≠

‹̄µe+
‹eb̄bb̄b.

and projecting the top-quark momenta on shell, apart from those in the denominators of
the resonant propagators, which are kept o� shell. At LO, the tt-DPA is simply based on
the doubly-top-resonant contributions in the Born matrix element. At NLO, we apply the
DPA only to the virtual contributions. This implies that we include the full Born and real-
radiation contributions and take into account non-factorisable virtual contributions following
the algorithm of Refs. [57–59] applied to QCD. At LO, such an approximation is more accurate
than an on-shell computation as full spin correlations, o�-shell propagators, as well as the
full phase space are taken into account. Moreover, at NLO the approximation is applied
only to the virtual corrections where also the doubly-resonant non-factorisable corrections are
included, while all other contributions of orders O

!
–

4
s –

4
"

and O
!
–

5
s –

4
"

are kept exact. In the
tt-DPA calculation, W and Z bosons are treated in the complex-mass scheme.

Note that as in the original DPA computations [51] in the past computations with
MoCaNLO [13, 52, 60] the DPA (retaining resonant contributions and applying the on-shell
projection) has also been applied to the I-operator in the integrated dipoles. It has been
noticed [61] that when done in combination with small –dipole parameter [62], this tends
to worsen the agreement with the full computation, as it treats large contributions in the

– 5 –

10�5

10�4

10�3

10�2

10�1

d
�
[f
b
]/

d
H

T
[G

eV
]

LO

LODPA

NLO

NLODPA

�200
�100

0
100
200
300
400

N
L
O

k

L
O

k
�

1[
%

]

k = full k = DPA

300 600 900 1200 1500 1800
HT [GeV]

�10
�5

0
5

k
D
P
A

k
f
u
l
l

�
1[

%
]

k = LO k = NLO

Figure 4: Di�erential distributions at LO and NLO for pp æ µ
+

‹µe+
‹eb̄bb̄b: transverse

momentum of the second-hardest b jet, rapidity of the hardest b jet, invariant mass of the
hardest and second-hardest b jet, and HT observable (see text for definition).

qualitative behaviour. The full NLO QCD corrections are essentially flat in this distribution.
They are a bit above +100% at rapidity 2.5 and slightly below +100% in the central region.
The distribution in the invariant mass of the two hardest bottom quarks is depicted in the
bottom left of Figure 4. These bottom quarks can either originate from a top-quark decay

– 13 –

• Thorough understanding of theory systematics in this channel crucial for  
  ttH measurements where H→bb  

• ttbb receives sizeable QCD corrections 
• Very important confirmation of (ttbb) double pole approximation 

pp ! 2`2⌫bb̄bb̄
[Bevilacqua, Bi, Hartanto, Kraus, Lupattelli, Worek, ’21]
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NLO+PS for gg → VV/H→4l
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Fig. 5 Di↵erential distribution in the transverse momentum
of the four lepton system pT,4` in gg ! e

+
e
�
µ
+
µ
� matched

to PYTHIA 8. Predictions, colour coding and bands as in Fig. 3.

large m4` ⇡ 2mt, with the interference being destruc-
tive. It is well known that the interference provides an
even larger destructive contribution at higher values of
m4`, which are however beyond the validity of the 1/mt

expansion used in our calculation. The m4` observable
is inclusive in QCD radiation and consequently parton-
shower corrections are marginal for all contributions
(individually and in their sum). In fact, for all pro-
duction modes the fixed-order NLO prediction agrees
at the percent level with both the LHE level prediction
and the fully showered prediction. Scale uncertainties
at the fully showered level are approximately 20%. At
small invariant masses (m4` < 150 GeV) the interfer-
ence becomes very small and consequently Monte Carlo
statistics deteriorate quickly in this regime.

Fig. 4 shows the distribution in

HT =
X

i2{`,⌫,j}

pT,i , (11)

where the sum over the transverse momenta considers
all leptons and reconstructed jets. In this distribution
the signal peaks at HT = mH , while the background
peaks at HT = 2mZ . For small HT parton-shower cor-
rections are mostly driven by the first radiation already
present at the LHE level. For the background contri-
bution, these corrections are small, but for the signal

Fig. 6 Di↵erential distribution in the transverse momentum
of the hardest jet pT,j1 in gg ! e

+
e
�
µ
+
µ
� at NLO matched

to PYTHIA 8. Predictions, colour coding and bands as in Fig. 3.

contribution they lead to a negative correction of about
50%. A possible explanation is that the signal distribu-
tion is strongly peaked around mH and therefore very
sensitive to additional radiation that moves events away
from the peak. For large HT , the parton showers pro-
vide substantial positive corrections up to a factor of
2, while the scale uncertainties can be as large as 50%.
This e↵ect can be understood as follows. The upper cut
on the invariant mass of the four leptons Eq. 8 also re-
stricts HT < 340 GeV at LO. However, the phase space
for HT > 340 GeV can be filled via additional QCD ra-
diation. This leads to significant NLO corrections (not
shown here), as well as to sizable parton-shower correc-
tions and LO-like scale uncertainties.

Figs. 5 and 6 display the transverse momentum of
the four-lepton system and of the hardest jet respec-
tively. For the latter no lower cut on the jet transverse-
momentum is applied. The two distributions are identi-
cal at fixed-order (they only di↵er in the first bin which
for pT,4` includes the Born and virtual contributions
proportional to �(pT,4`)). The fully showered predic-
tions include a Sudakov suppression which can clearly
be seen at the lower end of both the pT,4` and the pT,j1

distributions. We also observe that the parton shower
changes the sign of the lowest bin in the pT,4` spectrum.

•ggWW/ggZZ @ NLO QCD + PS available!
•crucial for off-shell Higgs measurements 

[Alioli, Ferrario Ravasio, JML, Röntsch, ’21]
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Figure 1: Representative Feynman diagrams for the Higgs-mediated signal amplitude gg ! H !

ZZ (a) and the background amplitude gg ! ZZ (b) at LO in pQCD. The decays of the Z-bosons

to leptons are understood.

interesting problem; it can only be fully addressed by studying the NLO QCD corrections

to gg ! ZZ amplitudes with the exact mass dependence.

The remainder of this paper is organized as follows. In Section II, we focus on ZZ production

in gluon fusion. We discuss details of the calculation, including validation of the 1/mt

expansion, and present results applicable to the LHC phenomenology. In Section III, we

present the calculation and discuss phenomenology of the WW production in gluon fusion.

We conclude in Section IV.

II. ZZ PRODUCTION

A. Details of the calculation

Scattering amplitudes for processes gg ! ZZ and gg ! ZZ + g can be written as

AZZ = AH +Ap, (1)

where the first amplitude describes the Higgs-mediated signal process gg ! H ! ZZ or

gg ! H ! ZZ+g and the second amplitude describes the “background” prompt production

gg ! ZZ and gg ! ZZ+g. Although not explicit in these notations, the leptonic decays of

Z-bosons are always included in the calculation and the Z-bosons are not assumed to be on

the mass shell. For background processes, �⇤-mediated amplitudes are also included. Upon

squaring the amplitude in Eq.(1), one obtains three terms

|AZZ |
2 = |AH |

2 + |Ap|
2 + 2Re [A⇤

H
Ap] , (2)
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‣ There is no clear scale/signature for new physics effects: 
 Let’s explore the unknown leaving no stone unturned!

‣ Precision is key for SM (QCD/EW/Higgs) measurements,  
 SM parameter determination, as well as for BSM searches.

‣ First 2→3 NNLO results are becoming available.

‣ N3LO for some 2→2 processes within reach

‣ At the 1% level a multitude of relevant effects might play  
an important role:  
PDFs, EW, QCD-EW, resummation/PS, off-shell/finite width… 

‣ Let’s push the SM precision frontier!

Conclusions

calculatemeasure
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DY at finite pT at NNLO+N3LL’
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Figure 5. Comparison of matched predictions at N3LL +NNLO (red) and N3LL0 +NNLO (blue) with
ATLAS data [96] for p``t (left panel) and �⇤

⌘ (right panel). The fixed-order component is turned off below
�⇤
⌘ = 3.4 ·10�2 in the right panel, see main text for details. In the left plot, the x axis is linear up to 30 GeV

and logarithmic above.

and rather insist on the variation of parameter v0 in a sensible range, such as [2/3, 3/2] around the
central v0 value, as better suited to this aim. This variation is responsible for the slight widening of
the band between 30 GeV and 100 GeV, which we believe to reflect a genuine matching uncertainty
in this region.

In Fig. 5 we finally compare matched predictions in the fiducial setup to ATLAS data [96],
both for p

``

t
(left panel) and for �

⇤
⌘

(right panel). The left panel includes the same theoretical
predictions shown in the right panel of Fig. 3 (keeping the same colour code), which are here
normalised to their cross section in order to match the convention of the shown data. The matched
N3LL0+NNLO predictions for p

``

t
show a remarkable agreement with experimental data, with a

theoretical-uncertainty band down to the 2 - 5% level, essentially overlapping with data in all bins
form 0 to 200 GeV (barring one low-p``

t
bin, where the cancellation between the fixed-order and the

expanded components is particularly delicate, and few middle-p``
t

bins where the agreement is only
marginal). The inclusion of ‘primed’ effects tends to align the shape of the theoretical prediction to
data, so that the former never departs more than 1 - 2% from the latter below 200 GeV, as opposed
to the more visible relative distortion of the N3LL +NNLO below 5 GeV and above 50 GeV. The
�
⇤
⌘

results on the right panel follow by and large the same pattern just seen for p
``

t
, with ‘primed’

effects being relevant to improve the data-theory agreement over the entire range, expecially at very
small �⇤

⌘
, and theoretical uncertainties at or below the ±3% level.

We incidentally note that, due to the extremely soft and collinear regime probed by �
⇤
⌘

data,
the fixed-order component features some fluctuations at small �⇤

⌘
; consequently, we have opted to

turn it off in the first bins (up to �
⇤
⌘
= 3.4 · 10�2), which implies that the matching formula in

that region corresponds to the sole resummation output, multiplied by Z(v). On the one hand
this shows that resummation alone is capable of predicting data remarkably well both in shape
and in normalisation at very small �⇤

⌘
; on the other hand it highlights the necessity of dedicated

high-statistics fixed-order runs in order to reliably extract information on fiducial cross sections at
N3LO by means of slicing techniques, especially in presence of symmetric lepton p

`
±

t
cuts.
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• O(5%) shift due to “‘“  (finite       contributions)↵3
S

• remarkable theory with data agreement at the few% level



 EW ZZ+2jets @ NLO QCD + EW
[A. Denner, R. Franken, M. Pellen, T. Schmidt; ’20]
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‡min
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Table 2: Fiducial cross sections for pp æ e+e≠µ+µ≠jj + X at 13 TeV CM energy at NLO
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]. Each contribution is given in fb (with the extrema resulting from scale variations
as absolute numbers and as deviation in percent) and as relative correction ” = ‡NLO/‡–6 ≠ 1
in percent. While the numbers in the upper part of the table are for the inclusive setup, those
in the lower part are for the VBS setup. The digits in parentheses indicate the integration
errors.

the ZZ æ ZZ subprocess. The left-over channels are further separated into 4 that contain
pp æ WZZ as subprocess (WZZ) and 8 that then always include the pp æ ZZZ subprocess
(ZZZ). We note that in total 36 partonic channels involve ZZ æ ZZ, 8 involve WZZ, and 16
involve ZZZ. None of the channels involves both WW æ ZZ and WZZ.

The contributions of these di�erent partonic processes are compiled in Table 3, where we
show the corresponding contributions of orders O

!
–6"

, O
!
–7"

, and O
!
–s–6"

in ab, as well as
the NLO corrections in percent. The LO O

!
–6"

cross section is dominated by the 16 partonic
channels containing WW æ ZZ as subprocess. The remaining partonic channels contribute
about 2.5% and 1.0% in the inclusive and VBS setup, respectively, at LO and similarly at
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!
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. The relative EW corrections are smaller for the non-VBS-WW channels
than for the VBS-WW channels apart from ZZZ in the VBS setup, which is however very
small. The O

!
–s–6"

contributions, on the other hand, are dominated by channels involving
triple-vector-boson production in the inclusive setup. In the inclusive setup more than 70% of
the VBS-ZZ contribution in the fifth column results from partonic channels that also involve
WZZ. Note that at this order also gq channels contribute at the same level as the qq channels
and are included in columns 5 and 6 of Table 3. In the VBS-setup, the VBS channels and
the non-VBS channels practically cancel at order O

!
–s–6"

. The cut Mj1j2 > 500 GeV reduces
the O

!
–s–6"

contributions of the WZZ/ZZZ channels by almost an order of magnitude. Note
that the QCD corrections are small for the dominating VBS-WW channels, but huge for the
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Figure 6: LO and NLO di�erential distributions at orders O
!
–6"

(LO), O
!
–7"

(NLO EW),
O

!
–s–6"

(NLO QCD), and NLO EW+QCD. The upper panels show absolute predictions
while the lower ones show each contribution relative to the LO predictions. The observables
read as follows: invariant mass of the two hardest jets (top left), rapidity separation of the
two hardest jets (top right), azimuthal angle between the two hardest jets (bottom left), and
cosine of the angle between the two hardest jets (bottom right).

Turning to the distribution in the rapidity di�erence shown in Figure 6b, the QCD
corrections reach almost 300% in the central rapidity region. The rapidity separation of the
two hardest jets is strongly correlated to their invariant mass (see, for instance, Figure 3
of Ref. [44]). Thus, the arguments given for the distribution in Mj1j2 can be transfered to
the distribution in �yj1j2 . Events with small �yj1j2 are depleted at LO owing to the cut
(3.9), while this is not the case at NLO QCD where extra gluons can provide a leading jet.
The distribution also shows that a cut on the rapidity di�erence would be very e�ective in
removing the sizeable QCD corrections linked to triple-vector-boson production in a similar

– 18 –

QCD and EW ss-WWjj at NLO QCD+EW: [Biedermann, Denner, Pellen ’16+’17] 
EW WZjj at NLO QCD+EW: [Denner, Dittmaier, Maierhöfer, Pellen, Schwan, ’19]

•2 → 6 particles at NLO EW !

•In the VBS phase-space EW mode receives:
‣very small QCD corrections (percent level)
‣O(20%) EW corrections
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The motivation for BSM searches are as compelling as ever

EW vacuum stability

Dark Matter

GUT unification

Neutrino masses

Hierarchy problem  

[Degrassi et al. ’13]

I. Gogoladze et al. / Physics Letters B 690 (2010) 495–500 497

Fig. 1. Gauge coupling evolution in the SM (left panel) and in the extended SM (right panel). The vectorlike mass is set equal to 500 GeV and the gauge coupling unification
scale is MGUT ≃ 3× 1016 GeV.

The RGE for the Yukawa coupling κ2 is obtained by making the re-
placement κ1 ↔ κ2 in Eqs. (13)–(15). This follows from the various
quantum numbers listed in Eq. (1). As previously mentioned, we
are neglecting mixing terms involving the new vectorlike particles
and the SM ones.

The RGE for the Higgs boson quartic coupling is given by [10]

dλ
d lnµ

= 1
16π2 β

(1)
λ + 1

(16π2)2
β

(2)
λ , (16)
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We calculate the Higgs boson pole mass mH from the running
Higgs quartic coupling using the one-loop matching condition [13].

According to Eq. (2) there are additional contributions to the
one- and two-loop beta function for λ which are proportional to
the κ1 and κ2 couplings. At one loop we have
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(
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1 + κ2

2
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(
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, (19)

and for two loop

δβ
(2)
λ =

(
8
5
g21 −64g23

)(
κ4
1 + κ4

2
)
−9

2
g42

(
κ2
1 + κ2

2
)

+ 10λ
(
1
4
g21 + 9

4
g22 + 8g23

)(
κ2
1 + κ2

2
)

+ 3
5
g21

(
3
2
g21 + 9g22

)(
κ2
1 + κ2

2
)
−72λ2(κ2

1 + κ2
2
)

−3λ
(
κ4
1 + κ4

2
)
+ 60

(
κ6
1 + κ6

2
)
. (20)

We next analyze the two-loop RGEs numerically and show how
the vacuum stability and perturbativity bounds on the SM Higgs
boson mass are altered in the presence of the new TeV scale vec-
torlike particles.

Before proceeding further let us note that we will identify
MGUT ∼3×1016 GeV with the UV cutoff scale. This is partially mo-
tivated by the fact that as far as possible, we wish to keep our dis-
cussion of the Higgs mass bounds independent of any specific un-
derlying GUT. Moreover, considerations based on black hole physics
reveal the presence of an ultraviolet cutoff of order MP /

√
N , where

N denotes the number of degrees of freedom of the underlying
theory [14]. In some GUTS such as SO(10) [15],

√
N can easily be

of order 10–100, thus bringing the UV cutoff scale closer to MGUT.
We define the vacuum stability bound as the lowest Higgs

boson mass obtained from the running of the Higgs quartic cou-
pling which satisfies the condition λ(µ) ! 0, for any scale between
MZ " µ " MGUT. On the other hand, the perturbativity bound is
defined as the highest Higgs boson mass obtained from the run-
ning of the Higgs quartic coupling with the condition λ(µ) " 4π
for any scale between MZ " µ " MGUT.

In Fig. 1, we present the evolution of the gauge couplings for
the SM (left panel) and for the extended SM (ESM) containing the
vectorlike fermions Q + Q̄ +D+ D̄ (right panel). As noted in [5], in
ESM model with new vectorlike fermions weighing a 100 GeV or
so, one can realize essentially perfect gauge coupling unification
at some scale MGUT. Furthermore, if we require gauge coupling
unification at a level of around 1% or so, then the new vector-
like fermion mass should weigh less than a TeV. For definiteness,
we set MF = 500 GeV in our calculation. In this case the SM gauge
couplings are unified at MGUT ≃ 3 × 1016 GeV. As seen in Fig. 1,
the new vectorlike particles help achieve unification by altering
the slopes of the three gauge couplings. In particular, the slope of
α3 is changed and it becomes larger at MGUT in comparison to the
SM case. The evolution of the top Yukawa coupling is also affected
and its value is somewhat smaller at MGUT.

In Fig. 2 we show how the evolution of the two-loop top
Yukawa coupling in ESM with MF = 500 GeV. The red dashed
line stands for the SM case, and the blue solid line corresponds
to the ESM with κi = 0. We also present in Fig. 2 the evolution
of the Higgs quartic coupling. The red dashed line corresponds
to the vacuum stability bound for Higgs quartic coupling in the

Chapter 2 Theoretical framework 15

a scalar this dependance is quadratic (at most logarithmic for all other parameters) and
becomes manifest when calculating higher-order corrections to the (squared) bare Higgs
mass (m0

h)
2. These read at the one-loop level

m2
h = (m0

h)
2 +

3Λ2
UV

8πv2
(m2

h + 2m2
W +m2

Z − 4m2
t ) . (2.24)

Here, the loop-momenta in the dominant contributions due to Higgs–self-interactions,
Higgs-couplings with massive gauge bosons and the (heavy) top-quark, are all cut-off at
the scale ΛUV. Clearly, a cut-off scale of the order of ΛPlanck or ΛGUT either forces the
Higgs mass and/or the EW scale to be of the same high scale (which is not observed),
or requires an unnatural amount of finetuning of independent parameters at each order
of perturbation theory. Due to the unnatural hierarchy between the EW scale and the
Planck scale this problem is also known as the hierarchy problem.

Many different models have been proposed to solve a number of these shortcomings. In this
thesis we want to concentrate on the framework of SUSY as a compelling solution to the
problems of dark matter, vacuum stability, unification and the hierarchy problems. In the
following we introduce the concept of SUSY and highlight these solutions.

2.2 Supersymmetry as a solution

In this section we first introduce the concept of supersymmetry and state its solutions to
some of the problems of the Standard Model, raised in the previous section. Afterwards we
discuses the MSSM and its particle spectrum. Finally, a short introduction to the unavoidable
breaking of SUSY is given. In this section we avoid detailed theoretical discussions, where we
refer to [62–64], on which this section is based on.

2.2.1 Motivation

From a theoretical point of view the concept of supersymmetry can be introduced in a very
elegant way: it is the only symmetry extending the Poincaré group in a non-trivial way.

According to the Coleman-Mandula theorem [65], any combination of the space-time Poincaré
group with an internal symmetry group can only be built out of direct products of commuting
operators. However, this no-go theorem can be, according to the Haag-Lopuszański-Sohnius
theorem [12], circumvented for symmetries with anti-commuting operators. The resulting
fermionic operator QA and its conjugate Q̄Ȧ are the generators of supersymmetry transfor-
mations. They commute with any internal gauge group and in a two-component Weyl spinor
notation [63] they obey the following algebra

{QA, QB} = {Q̄Ȧ, Q̄Ḃ} = 0 , (2.25)

{QA, Q̄Ḃ} = 2(σµ)AḂPµ .

[Planck ’15]

[KamLAND ‘5]
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Direct searches for new physics: overwhelming SM backgrounds 

45
→Theory precision is key to harness full potential of LHC data!

e.g.
DM

DM
 invisible in  
detectors

g

vs.

few percent!

Thanks to state-of-the-art  
theory predictions+uncertainties 
for SM backgrounds
[JML, et.al., ‘17]
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Figure 13. Exclusion (left) and discovery (right) contour lines for the 13 TeV LHC at the end of
the LHC Run2 (light red region) and of the HL-LHC (light blue region) assuming S/B>3%. For
the latter case also the case S/B>5% is shown. The region excluded by LUX and the projected
exclusion by XENON1T are also shown, together with the LEP limit on the �̃±

1 mass. M1 < �µ is
considered here.

for the exploration of the NSUSY parameter space.

5 Conclusions

In this paper we have explored the complementary potential of the Large Hadron Col-

lider and underground experiments to probe Dark Matter (DM) in the Natural Super-

symmetry (NSUSY) scenario. This study, which combines searches from di↵erent kinds

of experiments, has to be done in the context of a specific model, as (model-independent)

E↵ective Theory (EFT) approaches are very limited in scope, see e.g. the discussion in

Refs. [115, 116]. In particular the EFT approach is not applicable for well motivated

NSUSY scenario, which we study here, where DM has direct couplings to Standard Model

electroweak (EW) gauge bosons and the Higgs.

Current limits on simple SUSY scenarios are at the TeV range, in clear tension with

naturalness arguments and hence with the motivation for introducing SUSY in the first

place. A possible explanation for this situation is that the manifestation of SUSY is not

as simple as one expects, but there is more complexity in the structure of SUSY at high-

energies. Notwithstanding, one would still expect that the particles more directly related

to the tuning of the EW scale remain light in the spectrum. This leads to a generic

expectation that DM in NSUSY should have a sizeable Higgsino component.

While being theoretically attractive this scenario also represents a clear example of

how colliders and underground experiments can complement each other. Indeed, while

– 20 –

mDM

[Barducci, Sanz, et.al, ’15]
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Figure 4: Measured distributions of precoil
T for the precoil

T > 200 GeV selection compared to the SM predictions in the
signal region. The latter are normalized with normalization factors as determined by the global fit that considers
exclusive precoil

T control regions. For illustration purposes, the distributions of examples of Dark Energy (DE), SUSY,
and WIMP scenarios are included. The error band in the ratio shown in the lower panel includes both the statistical
and systematic uncertainties in the background predictions. Events with values beyond the range of the histogram are
included in the last bin.

already mentioned, inclusive regions with minimum precoil
T thresholds are used to set model-independent

exclusion limits, and the exclusive regions are used for the interpretation of the results within di�erent
models of new physics. For the latter, the presence of a slight excess of events at high precoil

T limits the
reach of the obtained observed limits, mostly for those models in which the expected signal would be
accumulating at the tail of the precoil

T distribution.

8.1 Model-independent exclusion limits

Results obtained in inclusive precoil
T regions are translated into model-independent observed and expected

95% CL upper limits on the visible cross section, defined as the product of the production cross section,
acceptance and e�ciency � ⇥ A ⇥ ✏ . The limits are extracted from the ratio between the 95% CL upper
limit on the number of signal events and the integrated luminosity, taking into consideration the systematic
uncertainties in the SM backgrounds and the uncertainty in the integrated luminosity. A likelihood fit is
performed separately for each of the inclusive regions IM0–IM12. The results are collected in Table 7.
Values of � ⇥ A ⇥ ✏ above 861 fb (for IM0) and above 0.3 fb (for IM12) are excluded at 95% CL.
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Indirect searches: disentangling very small effects

46

→Theory precision opens the door to new analysis strategies!
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Figure 5: Example Feynman diagrams for pp ! h+ jet involving supersymmetric particles.

In addition, there are diagrams like those in Fig. 1, but with the quarks in the loops replaced

by squarks.

for instance Ref. [44]. A large At leads to a large trilinear scalar coupling / hAtt̃Lt̃⇤R. If

all three fields aquire vacuum expectation values, the potential can have a deep charge- and

color-breaking minimum, separated only by a relatively low potential barrier from the usual

electroweak vacuum. A rough but conservative estimate of the vacuum stability condition

is given by [45,46]

A2
t
+ 3µ2 < a ·

�
m2

t̃1
+m2

t̃2

�
, (4.20)

with a ⇡ 3. This vacuum stability condition is shown in Fig. 6, colored in grey. We further

identify the regions of parameter space which are excluded because the soft masses MQ3 ,MU3

are not real (orange).

Direct limits from ATLAS and CMS significantly constrain the allowed parameter space.

An exhaustive re-analysis of the spectra and decays of all possible light and mixed stops

is, however, beyond the scope of our paper. While current experimental searches exclude

a significant part of the stop parameter space, these limits soften considerably for larger

LSP masses, close to kinematic degeneracies and in the presence of more complicated decay

chains, or in the absence of the traditional missing ET signatures (see e.g. Refs. [47–50]). In

particular, light stops with mt̃1
�m�̃0 ⇡ mt are still compatible with data [51,52]. It is there-

fore interesting to ask whether we can be sensitive to light and mixed stops independently of

the assumptions on their decays and even if their contribution cancels in the inclusive rate.

We calculated the relevant Feynman diagrams involving the stops using FeynArts-3.7 [53]

16

vs.

regime to probe the spectrum of top partners in composite Higgs models, whereas Section 4

looks at the h + jet process as a way to probe light stops in supersymmetric extensions

of the SM. Finally, Section 5 collects our conclusions. We also include an Appendix, where

formulae for the pp ! h+jet cross section mediated by CP -violating couplings are reported.

2 Analysis of pp ! h + jet

At the parton level, three subprocesses contribute to the pp ! h+jet cross section: these are

gg, qg, qq̄ ! h+ jet.5 The expressions of the SM matrix elements for gg ! hg and qq̄ ! hg,

mediated by quark loops, were first calculated at LO in QCD in Ref. [23] and shortly after

with a di↵erent notation in Ref. [24], which we used for our calculations. The matrix element

for the qg ! hq process is obtained from the one of qq̄ ! hg by crossing. Some of the

Feynman diagrams contributing to pp ! h+ jet are shown in Fig. 1. When the Lagrangian

in Eq. (1.3) is considered, the top contribution to the amplitudes is simply given by the SM

one rescaled by the modified coupling t.6 On the other hand, the contribution of heavy

g

g

g

h

t

q q

g h
t

q

q̄

g

h

t

g

g

g

h

Figure 1: Example Feynman diagrams for pp ! h+jet in the SM and with the contact term.

top partners in the loop is described by the e↵ective interaction parameterized by g, which

generates Feynman diagrams such as the lower-right one in Fig. 1. Roughly speaking, this

description is reliable as long as the mass of the heavy states is larger than the transverse

5
For brevity, we denote the sum qg + q̄g by qg.

6
In the SM, the e↵ect of including the bottom quark contribution in addition to the dominant one due to

the top is only of a few percent, if the cut on the transverse momentum is larger than 50GeV [22,25,26]. Since

we are interested in larger Higgs transverse momenta, we consistently neglect the bottom in our calculation.

4

e.g.
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Figure 3: Higgs transverse-momentum spectrum in the SM (black, solid) compared to separate
variations of the dimension-six operators for (a) 0GeV pT  400GeV and (b) 400GeV pT 
800GeV. The lower frame shows the ratio with respect to the SM prediction. The shaded band in
the ratio indicates the uncertainty due to scale variations. See text for more details.
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Figure 4: Higgs transverse-momentum spectrum in the SM (black, solid) compared to simultaneous
variations of ct and cg for (a) 0GeV pT  400GeV and (b) 400GeV pT  800GeV. The lower
frame shows the ratio with respect to the SM prediction. The shaded band in the ratio indicates
the uncertainty due to scale variations. See text for more details.
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[Grazzini et. al., 2016]

Higgs-pT

SM New physics Look for BSM effects in small deviations from SM predictions:
 → Higgs processes natural place to look at
 → very good control on theory necessary!
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next-to-leading order corrections

Higgs-pT
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Figure 3: Higgs transverse-momentum spectrum in the SM (black, solid) compared to separate
variations of the dimension-six operators for (a) 0GeV pT  400GeV and (b) 400GeV pT 
800GeV. The lower frame shows the ratio with respect to the SM prediction. The shaded band in
the ratio indicates the uncertainty due to scale variations. See text for more details.

���������������������
������������������������
����������

��
���������������
���������������
����������������
����������������

����

����

����

����

���

���

�����������

����
����
��

����
����
����
����
��

��� ���� ���� ���� ���� ���� ���� ����

(a) (b)

Figure 4: Higgs transverse-momentum spectrum in the SM (black, solid) compared to simultaneous
variations of ct and cg for (a) 0GeV pT  400GeV and (b) 400GeV pT  800GeV. The lower
frame shows the ratio with respect to the SM prediction. The shaded band in the ratio indicates
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From a pheno perspective finding the Higgs was “easy”…

•Higgs at 125 GeV allowed for very 
clean discovery in γγ & 4l channels  

•Bump hunting: little to no 
theoretical input needed. 

47
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…understanding the Higgs and its properties is tough!

Is the S(125 GeV) really the SM Higgs?
•CP properties? Is there a small CP-odd admixture?
•Precise couplings with vector-bosons/fermions as in SM?
•what is the Higgs width? Is there a significant invisible decay?
•only one Higgs doublet?
•what is the Higgs potential? self-coupling?

➡ the hunt to pin down the SM has just  
   started. 

➡ precision is key!

48



Theoretical Predictions for the LHC

49

General solution to “NLO problem” exist since long time: 
•tensor reduction (since 1970s)
•IR subtraction methods (since 1990s)

However: for a long time one-loop amplitudes 
               bottleneck due to exploding  
               algebraic expressions for multi-particle  
               processes (2 ➞ 4,5,6)

NLO Revolution (last ~20years): 
• radically new approaches: on-shell methods, OPP reduction, recursion-relations at NLO. . .
• automation of one-loop algorithms (BlackHat, CutTools, Collier, GoSam, HELAC 1-loop, MadLoop, 
 NGluon, OpenLoops, Recola, Samurai, Ninja,…) and NLO MCs (MadGraph_aMC@NLO, Sherpa, POWHEG,…)

•vast range of multi-particle NLO predictions at LHC  
(pp → 5j, W + 5j, H + 3j,  WWjj, WZjj, γγ + 3j, Wγγj, WWbb(+jet), bbbb, ttbb, ttjjj, tttt, ...) 

•Recent important achievement: extension to NLO EW (Sherpa+OpenLoops/Recola and MadGraph_aMC@NLO)

→Still room for important improvements:  
    speed, stability, flexibility.

→Opened the door for very detailed pheno analyses.

=
1

2s

Z
d�n

⇥
|MLO|2 + 2Re{MLOM⇤

NLO,V}+I
⇤
+

1

2s

Z
d�n+1|MNLO,R|2�Sd�NLO



Convergence of the perturbative expansion: inclusive Higgs

➡ Error estimate at LO largely underestimated!
➡ N3LO ~ 2 LO
➡ Higher-orders are crucial for reliable predictions  
  and precision tests of Higgs properties

The need for higher orders

HIGGS BOSON

▸ Precise measurement 

▸ 3.8 sigma deviation 

▸ 1500 papers about new 
physics on the arXiv 

▸ SM fails

Data Theory
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Convergence of the perturbative expansion: inclusive Higgs up to N3LOThe need for higher orders
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Figure 2: Cummulative contributions to the total relative uncertainty as a function of the
collider energy. according to eqs. (26)-(28).

In combination we find

��PP!H+X = �(PDF+↵S) + �(theory) = +3.63pb
�4.72pb

�
+7.46%
�9.7%

�
. (39)

To derive the various sources of uncertainties we followed the prescriptions
outlined above. In fig. 2 we show how the relative size of the various sources
of uncertainty varies as a function of the hadron collider energy.

In comparison to the numerical cross section predictions derived in ref. [3]
we observe only minor changes. The di↵erence arise solely due to the exact
computation of the N3LO QCD corrections in the heavy top quark e↵ective
theory obtained in ref. [16]. The deviations are well within the uncertainty
that was associated with the truncation of the threshold expansion used for
the results of ref. [3]. This particular source of uncertainty is now removed.

Finally, we use iHixs to derive state of the art predictions for the gluon
fusion Higgs production cross section at di↵erent collider energies. We strictly
follow the recommendations of [3, 4]. Figure 3 shows the state-of-the art
predictions and uncertainty estimates for the inclusive cross section obtained

18

[Dulata, Lazopoulosb, Mistlberger, ’18]

HL-LHC (3k fb-1)

➡ At this level: crucial to investigate any possible uncertainty 
  beyond naive scale variations
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The need for precision in tails

• many effective BSM operators yield growth with energy
→ expect small deviations in high energy shapes of distributions

comparison, the right plot shows the predicted shapes with the values of aTGC parameters corresponding
to the upper bounds of the observed 95% confidence interval.
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Figure 11: The leading lepton transverse momentum, plead
T , for eµ final states is compared for data and MC-

generated events using di↵erent arbitrary values for aTGC parameters (left). The detector-level distributions are
shown using values of aTGC parameters corresponding to the upper bounds of the observed 95% confidence inter-
val (right). The aTGC parameters are defined in the no constraints scenario, and the form-factor scale is set to be
infinity. The next-to-leading-order EWK correction scale factors from Table 10 have been applied here. Except for
the anomalous coupling parameter under study, all others are set to zero.

To derive the confidence interval for some specific anomalous coupling parameters in any of the described
scenarios, the other parameters are set to their SM values. Table 11 gives the expected and observed 95%
confidence interval for each of the anomalous coupling parameters defined in the no constraints, LEP,
HISZ and Equal Couplings scenarios. The limits are obtained with both ⇤ = 1 and ⇤ = 7 TeV. A
form-factor scale of 7 TeV is chosen as the largest value allowed by the unitarity requirement [86] for
most aTGC parameters. The confidence intervals for the e↵ective field theory approach are given in
Table 12. Figure 12 shows the expected and observed limits at 95% confidence level (C.L.), in red and
black respectively, and the theoretical constraint due to the unitarity requirement (shown as blue dashed
lines) as a function of form-factor scales from ⇤ = 2 TeV to ⇤ = 10 TeV. The largest value of form-factor
scales that can preserve unitarity is ⇠7–9 TeV for most aTGC parameters, while it is only about 3 TeV for
�gZ

1 . All observed limits are more stringent than the expected limits because the data distribution falls
more steeply than expected and a deficit of events is observed for the highest plead

T bins.

The limits in the plane of two coupling parameters are shown for the no constraints and LEP scenarios
in Figure 13 and Figure 14, respectively. Further limits obtained for the Equal Couplings and HISZ
scenarios are shown in Figure 15. Finally, the 95% confidence-level contours for linear combinations of
aTGC parameters defined in the e↵ective field theory approach are shown in Figure 16.

Due to the increased integrated luminosity and the higher centre-of-mass energy, the new limits are more
stringent by up to 50% than those previously published by the ATLAS Collaboration using data taken
at
p

s = 7 TeV [12]. The constraints derived in the LEP scenario are similar to the combined results of
the LEP experiments and in a few cases the derived limits exceed the bounds placed by LEP. The 95%
confidence-level limits on �gZ

1 obtained in this analysis range from �0.016 to 0.027 whilst the limits
from LEP cover values from �0.021 to 0.054. The 95% confidence intervals on CWWW/⇤2 and CB/⇤2

derived in this analysis are similar, or up to 20-30% more restrictive than those obtained by the CMS
Collaboration in Ref. [14], which derives limits for the e↵ective field theory approach only and uses the

37

pp→WW
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Figure 3: Higgs transverse-momentum spectrum in the SM (black, solid) compared to separate
variations of the dimension-six operators for (a) 0GeV pT  400GeV and (b) 400GeV pT 
800GeV. The lower frame shows the ratio with respect to the SM prediction. The shaded band in
the ratio indicates the uncertainty due to scale variations. See text for more details.
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Figure 4: Higgs transverse-momentum spectrum in the SM (black, solid) compared to simultaneous
variations of ct and cg for (a) 0GeV pT  400GeV and (b) 400GeV pT  800GeV. The lower
frame shows the ratio with respect to the SM prediction. The shaded band in the ratio indicates
the uncertainty due to scale variations. See text for more details.
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[Grazzini et. al., 

Higgs-pT

→ very good control on SM predictions necessary!



  Numerically                             NLO EW ~ NNLO QCD  

1. Possible large (negative) enhancement due to soft/collinear logs from virtual EW gauge bosons: 
                           
 
 
 
 
 
 

[Ciafaloni, Comelli,’98; 
Lipatov, Fadin, Martin, Melles, '99; 
Kuehen, Penin, Smirnov, ’99;  
Denner, Pozzorini, '00]
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Figure 5: Transverse-momentum distribution for W -boson production at the LHC.
(a) LO distribution for pp→W+j and pp→W−j. (b) Relative NLO (dotted), NLL
(thin solid), NNLL (squares) and NNLO (thick solid) electroweak correction wrt. the
LO distribution for pp→W+j. (c) Relative NLO (dotted), NLL (thin solid), NNLL
(squares) and NNLO (thick solid) electroweak correction wrt. the LO distribution
for pp→W−j.
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(thin solid), NNLL (squares) and NNLO (thick solid) electroweak correction wrt. the
LO distribution for pp→W+j. (c) Relative NLO (dotted), NLL (thin solid), NNLL
(squares) and NNLO (thick solid) electroweak correction wrt. the LO distribution
for pp→W−j.
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pp → W++j

[Kühn et. al.; 2007]
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➜ overall large effect in the tails of distributions: pT, minv, HT,… (relevant for BSM searches!) 

Relevance of EW higher-order corrections I

Universality and factorisation: [Denner, Pozzorini; ’01] 
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Search limits

➡ BSM certainly not ‘around the corner’
➡ Leave no stone unturned
➡ Push towards smaller couplings / exotic signatures
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