

LHCb Highlights

EPS-HEP Conference 2021 European Physical Society conference on high energy physics 2021 Online conference, July 26-30, 2021

Franz Muheim University of Edinburgh and CERN

on behalf of the LHCb collaboration

- Introduction
- Selected physics highlights
- LHCb upgrade
- Conclusions

28/07/2021

28/07/2021

LHCb experiment

LHCb collaboration

- 1500 members and > 1000 authors
- 86 institutes, 19 Countries

Data samples

Run 1 and 2 with 3 fb⁻¹ and 6 fb⁻¹

Physics output

- 575 papers submitted, 558 published
- ~20 new papers for this summer

Luminosity

LHCb talks at EPS

Rare decays and CP violation Paula Alvarez, Thu 29/7 15:15

Monday	Tuesday	Wednesday	Thursday	Friday	
			9:30 T _{cc} +→D*D I. Polyakov	9:30 R _k M. McCann	
10:30 W-mass R. Hunter	10:00 B→DDK & X(3872) Q. Xu	10:45 Charged hadrons O. Boente	10:15 $P_c{}^+$ in $B^0{}_s{\rightarrow}J/\psi pp$ J. Fu	10:00 В⁰ _s →φµµ Ch. Langenbruch	
10:45 Charm in pPb Ch. Gu	10:45 R(D*) B. Mitreska	11:00 SMOG S. Mariani		10:30 DM T. Mombacher	
	11:00 Λ ⁰ _b prod asym L. Dufour	11:00 Charm baryons A. Xu			
11:35 CKM γ M. Whitehead	11:15 V _{ub} A. Lupato	11:15 Charm mixing F. Betti	11:15 $\Lambda_{b}^{0} \rightarrow \Lambda_{0}^{0} \gamma$ P. Gironella	11:15 B⁰ _s →µµ M.Ramos	
		12:30 Highlights F. Muheim			
14:15 B ⁰ _s →KK Th. Grammatico					
14:15 PbPb G. Manca					
14:45 B+ _c →DD F. Bishop	16:00 Intrinsic charm L. Sestini		15:15 Rare decays and CPV P. Alvarez		
15:45 B→hhh L. Soares	16:30 LLP A. Usachov	17:30 φ _s V. Lukhasenko	17:30 New b hadrons H.Mu		

28/07/2021

28/07/2021

Electroweak penguin decays

Flavour changing neutral currents

- b → s $\ell^+\ell^-$
- Forbidden at tree level in SM
- Branching fractions at 10⁻⁶ to 10⁻¹⁰
- Powerful probe of New Physics

		Report	Title
		2003.04352	Search for the lepton flavo
	$\pi \mathbf{k}_{\mathbf{k}}$	2003.03999	Search for the rare decays
		<u>2003.04831</u>	Measurement of CP-average
		<u>2010.06011</u>	Strong constraints on the decays
		2012.13241	Angular analysis of the B^+
		2103.11769	Test of lepton universality
	A.,	2105.14007	Differential branching fract
		PAPER-2021-007	Improved measurement of
		PAPER-2021-008	Measurement of $B^0_s \rightarrow \mu^+ \mu^-$
1 A 48.88		PAPER-2021-017	Search for the $\Xi_b \rightarrow \Xi \gamma$ radia
N V V		PAPER-2021-022	Updated angular analysis of
		PAPER-2021-030	Measurement of the photo

			Comment							
2020										
003.04352	Search for the lepton flavour violating decay $B^+ \rightarrow K^+ \mu^- \tau^+$ using B^{*0}_{s2} decays	Limit	Lepton Flavour Viol.							
003.03999	Search for the rare decays $B^0_s \rightarrow e^+e^-$ and $B^0 \rightarrow e^+e^-$	Limit	Rare decay							
003.04831	Measurement of CP-averaged observables in the ${\cal B}^0{\rightarrow}{\cal K}^{*0}\mu^+\mu^-$ decay	P5'	Angular asymmetry							
<u>010.06011</u>	Strong constraints on the $b{\rightarrow}sy$ photon polarisation from $B^0{\rightarrow}K^{*0}e^+e^-$ decays	C ₇ ′	Wilson coefficient							
012.13241	Angular analysis of the $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ decay	P5'	Angular asymmetry							
2021										
<u>103.11769</u>	Test of lepton universality in beauty quark decays	Rĸ	Lepton Flavour Non-Univ.							
105.14007	Differential branching fraction of $B^0{}_s \rightarrow \phi \ \mu^+\mu^-$ and search for $B^0{}_s \rightarrow f'{}_2\mu^+\mu^-$	d F/dq ²	Decay rate							
APER-2021-007	Improved measurement of $B^0_{(s,d)} \rightarrow \mu^+ \mu^-$ decays	BR	Rare decay							
APER-2021-008	Measurement of $B^0_s \rightarrow \mu^+ \mu^-$ and search for $B^0 \rightarrow \mu^+ \mu^-$ and $B^0_s \rightarrow \mu^+ \mu^- \gamma$ decays	BR	Rare decay							
APER-2021-017	Search for the $\Xi_b \rightarrow \Xi \gamma$ radiative decay	Limit	Rare decay							
APER-2021-022	Updated angular analysis of the rare decay $B^0{}_{s}\!\!\rightarrow\phi\;\mu^+\mu^-$	FL, AFB	Angular asymmetry							
APER-2021-030	Measurement of the photon polarization in $\Lambda^0_b \rightarrow \Lambda \gamma$ decays	C ₇ ′	Polarization							

• Significant part of physics programme

- 7 papers already in 2021
- Branching fractions, angular analysis, Lepton flavour universality or violation

28/07/2021

$b \rightarrow s e^+e^-$ branching fractions

Differential branching fractions

- Decay rate of $b \rightarrow s \ell^+ \ell^-$ sensitive to BSM
- Branching fractions low for muons (B^+ , B^0 , B_s^0 and Λ_b^0)

B_s⁰ → φμ⁺μ⁻

- In agreement with Run 1 result
- 3.6σ deviation tension with SM

NEW

LHCb-PAPER-2021-014 arXiv:2105.14007

Electroweak penguin decays at LHCb Christoph Langenbruch

28/07/2021

LHCb ГНСр

$b \rightarrow s e^+e^-$ angular analysis

Angular observables

- Polarisation, asymmetries vs q²
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - Local tension 2.5 σ and 2.9 σ in asymmetry P₅' with SM in q² bins [4,6] and [6,8] GeV²/c⁴
 - Global analysis finds tension 3.3σ
 - Consistent with ATLAS, Belle, CMS results

PRL 125 (2020) 011802

PRL 126 (2021) 161802

• $B^+ \rightarrow K^{*+} \mu^+ \mu^-$

- First LHCb measurement
- Local tension with SM up to 3.0σ in P₂(~ A_{FB}) in q² bin [6,8] GeV²/c⁴
- Global tension 3.1o determined in fit to effective field theory Wilson coefficient Re(C₉)

28/07/2021

$b \rightarrow s e^+e^-$ angular analysis

0.8 LHCb

0.8 LHCb

0.6

0.4

0.6

- $B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$
 - First angular analysis in this mode
 - Observables F₁ and coefficients S_i
 - Compatible with SM, tension in F₁
 - Compatibility 1.9 using "Flavio" package to fit for shift of EFT coefficient <u>∆Re(C₉)</u> i.e. vect LHCb

Summary

Internally consistent trends obser $B^0 \rightarrow K^{*0}\mu^+\mu^-$, $B^+ \rightarrow K^{*+}\mu^+\mu^-$ and B_s

LHCb-PAPER-2021-022

LHCb 8.4fb LHCb 3fb⁻¹

SM (LCSR+Lattice)

w(2S)

 $q^2 \,[{
m GeV^2/c^4}]$

NEW

LHCb 3fb⁻¹

10

SM (LCSR+Lattice)

 $F_{\rm L}$

0.5 0.4 0.3

0.2 E 0.1E

0.9 LHCb Preliminary

Electroweak penguin decays at LHCb Christoph Langenbruch

 $\Delta \mathcal{R}e(C_9)$

28/07/2021

Franz Muheim - LHCb highlights

0.4

0.3 0.2

0.1

8

LHCb ГНСр

Very rare leptonic decay

- Helicity and CKM suppressed
- Sensitive to New Physics

• $B_s^0 \rightarrow \mu^+\mu^-$

- $\ \ B(B_s{}^0 \rightarrow \mu^+ \mu^-) = 3.09^{+0.46}{}_{-0.43} \ ^{+0.15}{}_{-0.11} \times 10^{-9}$
- Significance > 10 σ
- in agreement with SM

• $B^0 \rightarrow \mu^+\mu^-$

- $B(B^0 \rightarrow \mu^+ \mu^-)$ < 2.6 \times 10^{-10} at 95% CL
- First search for $B_s^0 \rightarrow \mu^+\mu^-\gamma$
 - − $B(B_s^0 \rightarrow \mu^+ \mu^- \gamma) < 2.0 \times 10^{-9}$ at 95% CL for $m_{\mu\mu} > 4.9$ GeV/c²

LHCb-PAPER-2021-007 LHCb-PAPER-2021-008

28/07/2021

28/07/2021

Lнср

B_s Oscillations

B_s⁰ mass difference Δm_s

- Measured by oscillation frequency with $B_s^0 \rightarrow D_s^{\mp} \pi^{\pm}$ decays
- Flavour tagging identifies
 B_s⁰ / anti-B_s⁰ at production

Legacy measurement

- $-\Delta m_s = 17.7683 \pm 0.0051 \pm 0.0032 \text{ ps}^{-1}$
- Precision 3 x 10⁻⁴
- Including $B_s^0 \rightarrow D_s^{\mp}h^{\pm}\pi^{\pm}\pi^{\mp}$ et al.
- $-\Delta m_s = 17.7656 \pm 0.0057 \text{ ps}^{-1}$

LHCb-PAPER-2021-005, arXiv:2104.04421 LHCb-PAPER-2020-030, JHEP 03 (2021) 137

$$-B_s^0 \to D_s^- \pi^+$$
 $-\overline{B}_s^0 \to B_s^0 \to D_s^- \pi^+$ $-$ Untagged

Measurement of the CKM angle gamma at LHCb Mark Whitehead

28/07/2021

Lнср

Charm mixing

Charm D⁰ Mixing

- Unique: up-type quarks
- Small mixing, sensitive to *P*

$$|D_{1,2}\rangle \equiv p|D^0\rangle \pm q|\overline{D}{}^0\rangle \frac{x \equiv (m_1 - m_2)c^2/\Gamma}{y \equiv (\Gamma_1 - \Gamma_2)/(2\Gamma)}$$

- No measurement of $x \neq 0$ until this summer
- Charm at LHCb
 - Large cross section $\sigma_{\rm cc}$ ~ 5 mb, charm rate ~2 MHz
 - Run 2 dedicated Turbo trigger 15 kHz to tape
- $D^0 \rightarrow K_s^0 \pi^+ \pi^-$
 - 30.6M decays & very small background
- Bin-flip method
 - Measure asymmetry between D⁰ and anti-D⁰ in binned Dalitz plot $m^{2}(K_{s}^{0}\pi^{-})$ vs $m^{2}(K_{s}^{0}\pi^{+})$
 - In each bin approx. constant strong-phase difference between D⁰ and anti-D⁰ amplitude

NEW

LHCb-PAPER-2021-009 arXiv:2106.03744

Mixing and time-dependent CPV in charm decays at LHCb Federico Betti

28/07/2021

Observation of mass difference

Observation

of small mass difference
 in neutral charm meson eigenstates

$$\begin{split} x &= (3.98^{+\,0.56}_{-\,0.54}) \times 10^{-3}, \\ y &= (\ 4.6^{+\,1.5}_{-\,1.4}\) \times 10^{-3}, \\ |q/p| &= 0.996 \pm 0.052, \\ \phi &= 0.056^{+\,0.047}_{-\,0.051}. \end{split}$$

- $-m_1 m_2 = 6.4 \times 10^{-6} \text{ eV} = 1 \times 10^{-38} \text{ g}$
- Significance > 7 σ

NEW

Mixing and time-dependent CPV in charm decays at LHCb Federico Betti

LHCb-PAPER-2021-009

arXiv:2106.03744

28/07/2021

28/07/2021

id. Individe a (q/p) in the second support from ABC and ARD (q/p) is the dimensional profile likelihood contours for (left) the charm mixing a); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and y, and (right) the ϕ and (q/p) parameters. The blue contours show the current of this combination of the contours of the current of this combination of the current of the current of this combination.

Charmed Ω⁰ baryon lifetime

Charmed baryon lifetimes

- Λ_{c}^{+} (udc), Ξ_{c}^{+} (usc), Ξ_{c}^{0} (dsc), Ω_{c}^{0} (ssc)
- Hierarchy (PDG 2018) $\tau(\Omega_c^{-0}) < \tau(\Xi_c^{-0}) < \tau(\Lambda_c^{+}) < \tau(\Xi_c^{+})$
- 2018 LHCb measures longer $\tau(\Omega_c^0)$ in semileptonic b-baryon decays

Promptly produced c-baryons

- $\Omega_c^0 \rightarrow p K^- K^- \pi^-$
- $\Xi_c^0 \rightarrow p K^- K^- \pi^-$
- $\tau_{\Omega_c^0} = 276.5 \pm 13.4 \pm 4.4 \pm 0.7 \,\mathrm{fs},$
 - $\tau_{\Xi_c^0} = 148.0 \pm 2.3 \pm 2.2 \pm 0.2 \,\mathrm{fs},$
- Confirms $\tau(\Omega_c^0)$ is 4x longer
- **New lifetime hierarchy**
 - $\tau(\Xi_c^{0}) < \tau(\Lambda_c^{+}) < \tau(\Omega_c^{0}) < \tau(\Xi_c^{+})$

LHCb-PAPER-2021-021 **NEW**

PRL 121 (2018) 092003

28/07/2021

Californ

that the strong inte

are correctly descifold way'' $^{1-3)}$, we

alone ⁴). Of course, with only strong interactions, the orientation of the asymmetry in the unitary space cannot be specified; one hopes that in some way the selection of specific components of the Fspin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions.

Even if we consider the scattering amplitudes of strongly interacting particles on the mass shell only

properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^3 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q \bar{q})$, etc., while mesons are made out of $(q \bar{q})$, $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1 **8** and 10 that have been observed, while

hamental demonstration and the mass shall only taking 1 & and 10 that have been observed, while and 10 that have been observed, while ilarly gives and 10 that have been observed, while ilarly gives Baryon Meson Tetraquark Pentaquark

28/07/2021

LHCb ГНСр

Exotic Spectroscopy

• Overview

- Discovery of X(3872) now $\chi_{c1}(3872)$ by Belle in 2003 started new era in exotic spectroscopy
- Observation of ccuud pentaquarks
 P_c(4312)⁺, P_c(4440)⁺ and P_c(4457)⁺
- Observation of two ccus tetraquarks
 Z_{cs}(4000)⁺ and Z_{cs}(4220)⁺
- Evidence for two cdus tetraquarks
 X₀(2900) and X₁(2900)

LHCb-PAPER-2020-044 arXiv:2106.03744

28/07/2021

Observation of excited Ξ_b^0 baryons

• $\Xi_b^0 \rightarrow \Lambda_b^0 K^- \pi^+$ spectrum

- Using 1.6 M $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^$ and $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- \pi^+ \pi^-$ decays

Observation

Two new excited Ξ_b⁰ states

$$\begin{split} m_{\Xi_b(6327)^0} &= 6327.28^{+0.23}_{-0.21} \pm 0.08 \pm 0.24 \, \text{MeV}, \\ m_{\Xi_b(6333)^0} &= 6332.69^{+0.17}_{-0.18} \pm 0.03 \pm 0.22 \, \text{MeV}, \\ \Gamma_{\Xi_b(6327)^0} &< 2.20 \, (2.56) \, \text{MeV} \text{ at } 90\% \, (95\%) \, \text{CL}, \\ \Gamma_{\Xi_b(6333)^0} &< 1.55 \, (1.85) \, \text{MeV} \text{ at } 90\% \, (95\%) \, \text{CL}, \end{split}$$

NEW

LHCb-PAPER-2021-025

LHCb ГНСр

Evidence for structure in $J/\psi p$

Amplitude analysis

- using 800 $B_s^0 \rightarrow J/\psi p \overline{p}$ decays
- Observe structure in
 J/ψp and J/ψp spectrum
- Significance of 3.1_o to 3.7_o
 depending on J^P assignment

• Evidence

- For P_c(4337)⁺ state
- Consistent with a (ccuud) pentaquark
- Mass and width

 $M_{P_c} = 4337^{+7}_{-4}(\text{stat})^{+2}_{-2}(\text{syst}) \text{ MeV},$ $\Gamma_{P_c} = 29^{+26}_{-12}(\text{stat})^{+14}_{-14}(\text{syst}) \text{ MeV},$

NEW LHCb-PAPER-2021-018 Ped 2€0 LHCb Preliminary Events/0.01 4(20 4.2 $2 \qquad 4.3 \qquad 4$ $m(J/\psi p)[Ge]$ 4.1GeV LHCb 60 Preliminary Events/0.01 40 20 $\frac{2}{m(J/\psi \overline{p})} \frac{4.3}{[GeV]}$ 4.14.2

Recent LHCb results on pentaquark candidates Jinlin Fu

28/07/2021

Exotic Spectroscopy

• Categories of observed resonance states

- Excited states: bq, cq, bqq, cqq
- Exotic states: cc(qq), cccc, cqqq, ccqqq
- Evidence for two cdus tetraquarks
- Natural width varies from O(1) to O(100) MeV
- Heavy quark symmetry
 - Predicts doubly heavy tetraquark hadron
 ccqq or bbqq to be long-lived
 with respect to strong interaction
- Doubly charmed tetraquark T_{cc}⁺
 - Ground state T_{cc}^+ with $J^P = 1^+$
 - Many models predict T_{cc}^+ mass close to the D*D threshold
- Observation strategy

28/07/2021

LHCb ГНСр

Search for T_{cc}⁺ state

• T_{cc}⁺ search

- Expected to decay to $D^0 D^0 \pi^+$ with $D^0 \rightarrow K^- \pi^+$
- Study $D^0 D^0 \pi^+$ mass spectrum
- Mass near D^{*+}D⁰ and D^{*0}D⁺ thresholds
- mass difference

 $\delta m \equiv m_{\rm T_{cc}^+} - (m_{\rm D^{*+}} + m_{\rm D^0})$

Method

- Unbinned log-likelihood fit
 to 2 dimensional D⁰ mass combinations
 of D⁰ D⁰ π⁺ candidates
- to subtract background from combinatorial K⁻ π^+ pairs

NEW LHC

LHCb-PAPER-2021-031

28/07/2021

Observation of T_{cc}⁺ state

- First observation of a same-sign doubly charmed tetraquark T_{cc}⁺
 - Very narrow state in
 D⁰ D⁰ π⁺ mass spectrum
 - Consistent with ccud tetraquark
 - Mass very close to D*+D⁰
 mass thresholds
 - Manifestly exotic
- Parameters of T_{cc}⁺
 - Fit structure with P-wave relativistic Breit-Wigner

 $\delta m_{\rm BW} = -273 \pm 61 \pm 5^{+11}_{-14} \,\text{keV}/c^2 \,,$ $\Gamma_{\rm BW} = 410 \pm 165 \pm 43^{+18}_{-38} \,\text{keV} \,,$

- Uncertainties stat, syst and due $J^P = 1^+$ assumption
- Significance for signal > 10 σ
- Significance for $\delta m_{BW} < 0$ 4.3 σ

Recent LHCb results on exotic meson candidates Ivan Polyakov

28/07/2021

28/07/2021

Spectroscopy at the LHC

• Status 28 July 2021

Electroweak, QCD, Heavy Ions

A MODEL OF LEPTONS*

Steven Weinberg[†] Laboratory for Nuclear Science and Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts (Received 17 October 1967)

Leptons interact only with photons, and with the intermediate bosons that presumably mediate weak interactions. What could be more natural than to unite¹ these spin-one bosons into a multiplet of gauge fields? Standing in the way of this synthesis are the obvious differences in the masses of the photon and intermediate meson, and in their couplings. We might hope to understand these differences by imagining that the symmetries relating the weak and electromagnetic interactions are exact symmetries of the Lagrangian but are broken by the vacuum. However, this raises the and on a right-handed singlet

$$R \equiv \left[\frac{1}{2}(1-\gamma_5)\right]e. \tag{2}$$

The largest group that leaves invariant the kinematic terms $-\overline{L}\gamma^{\mu}\partial_{\mu}L-\overline{R}\gamma^{\mu}\partial_{\mu}R$ of the Lagrangian consists of the electronic isospin \vec{T} acting on *L*, plus the numbers N_L , N_R of left- and right-handed electron-type leptons. As far as we know, two of these symmetries are entirely unbroken: the charge $Q = T_3 - N_R - \frac{1}{2}N_L$, and the electron number $N = N_R + N_L$. But the gauge field corresponding to an unbroken sym-

28/07/2021

LHCb ГНСр

W mass measurement

NIVERSING CONSTRUCTION

• W boson mass

- Fundamental parameter of Standard Model
- Sensitivity to new physics limited
 - by direct m_w measurements
- Most precise results from ATLAS, CDF and D0

Global electroweak fit EPJC 78, 675 (2018) GFitter

LHCb parton distributions

28/07/2021

Lнср

W mass measurement

×10³

Method

- $W^+ \rightarrow \mu^+ \nu_{\mu}$ decay mode
- Transverse momentum p_T of muon with charge q peaks at ~m_w/2
- Shift in m_w distorts q/p_T spectrum
- Muon p_T depends on transverse momentum p_T^W of W boson
- $Z \rightarrow \mu^+ \mu^-$ decays measured simultaneously

 $\phi^* = \frac{\tan((\pi - \Delta \phi)/2)}{\cosh(\Delta \eta/2)} \sim \frac{p_{\rm T}^Z}{M},$

NEW

Muon q/p_{T} [1/GeV]

LHCb-PAPER-2021-024

 0.0151 ± 0.0007

m_w determination

- Simultaneous fit to q/p_T and
- Precision: 23 MeV stat. uncer
- Systematic uncertainties from PDF, theory and experiment

28/07/2021

Franz M

Fraction of hadron background

Discussion and outlook

LHC

LHCb ГНСр

Intrinsic charm of proton

Z boson and charm jets

σ(Zc)/σ(Zj) fraction of Z+jet events
 where jet originates from a charm quark

Charm-jet

- Displaced vertex DV, corrected mass m_{cor}
- Calibrated with tag and probe

Result

- Sizable enhancement of c-jets at high Z rapidity
- Consistent with 1% intrinsic charm in proton

anced sub-samp

LHCb-PAPER-2021-029

NEW

QCD physics measurements at the LHCb experiment Lorenzo Sestini

28/07/2021

Ľ

28/07/2021

pPb, pp

R_{pPr}

Heavy Ion Physics

PbPb collisions at vs = 5 TeV

- Coherent production of
 J/ψ ultraperipheral lead-lead collisions
- $J/\psi \rightarrow \mu^+\mu^-$ rapidity 2.0<y<4.5
- Cross-section $\sigma = 4.45 \pm 0.24 \pm 0.18 \pm 0.58$ mb
- Comparison to phenomenological models
- Charged particle production at vs = 5 TeV
 - Comparison of pPb and pp data samples
 *p*Pb *pp* 5 TeV
 Nuclear modification factor

 $\rightarrow R_{pPb}(\eta, p_{T}) = \frac{1}{A} \frac{d^2 \sigma_{pPb}(\eta, p_{T})/dp_{T} d\eta}{d^2 \sigma_{pp}(\eta, p_{T})/dp_{T} d\eta} \qquad A = 208$

 $\frac{N^{ch}(\eta, p_{T})}{\Delta p_{T}^{ch}\Delta \eta} een fc \mathcal{W} \partial \mathcal{P} d; \mathcal{W} \partial \mathcal{P} d; \mathcal{W} \partial \mathcal{P} d and backward \eta$

LHCb-PAPER-2021-013

Charged hadron production at LHCb Oscar Boente

Beam	Acceptance	Luminosity	
	0 < m < 10	2.40 ± 0.07 mb -1	
pp	$2 < \eta < 4.8$	3.49 ± 0.07 mb -	
		aim I UCh high	liahta
nPh	16 √ 6441¥1U1	10/07/73+L M 9/07/11/201	lights
$P^{\perp} O$	1.0 < // < 1.0	$12.10 \pm 0.00 \mu 0$	0

Upgrades present and future

Physics Case for an LHCb Upgrade II

Opportunities in flavour physics, and beyond, in the HL-LHC era

28/07/2021

Lнср

LHCb upgrade I

• LHCb upgrade

- = new detector
- Installation ongoing
- Huge challenge
- intensified due to
 Covid

Status of Installaton

- Significant progress
 under difficult circumstances
- Travel restrictions are still a concern
- Commissioning has started RICH, CALO, Muons

28/07/2021

VELO and UT

• VELO modules

- 40 of 52 modules produced
- Assembly of half-VELO starting

• UT modules

- production nearly complet
- Module mounting next

28/07/2021

Franz

• SciFi half detector installed

- Happened 10 days ago a major milestone
- 6/12 C-frames installed

HCb RICH, CALO, Muons Commissioning

RICH 2 installed

- 1st detector in commissioning

A side switched on

DCS and DAQ

Rich2 Pixel Map

CALO

 Front-end board installation progressing well

Muons

 Electronics installed

Commissioning ongoing

28/07/2021

LHCb Upgrade I – Online & Trigger

Software High Level Trigger

- 30 MHz event rate
- 10 GB/s to Storage
- Online installation
 - Event builder PC servers & FPGA DAQ cards completed
 - Event builder network > 100 Tb/s achieved
 (200 x Run2, 32 Tb/s required)
 - Commissioning of Muon, RICH, CALO underway

GPU HLT1 trigger

- Event reconstruction In trigger achieved in single GPU card
- Full reconstruction in trigger achieved required CPU event rate

LHCb Run 3 Trigger Diagram 30 MHz inelastic event rate

28/07/2021

LHCb Upgrade II

• LHC flavour physics facility

- Fully exploit HL-LHC luminosity for flavour physics & beyond
- Expression of interest (2017)
- Physics Case (2018)
- Strong support in European Strategy (2020)

Framework TDR

– Drafting in progress, delivery later this year

LHCb Upgrade II Scenario-I $R_{\kappa} \begin{bmatrix} 1,6 \end{bmatrix}$ $R_{\kappa} \begin{bmatrix} 1,6 \end{bmatrix}$	$\Delta \mathcal{C}_9 = -1.4$
LHCb Upgrade II Scenario-II	$\Delta \mathcal{C}_9 = -0.7 \ \Delta \mathcal{C}_{10} = +0.7$
LHCb Upgrade II Scenario-III	$\Delta C'_9 = +0.3$ $\Delta C'_{10} = +0.3$
LHCb Upgrade II	+
Scenario-IV	$\Delta \mathcal{C}'_9 = +0.3 \ \Delta \mathcal{C}'_{10} = -0.3$
LHCb Run 1	
0.4 0.6 0.8	1 1.2
	R_X

28/07/2021

Franz Muheim - LHCb highlights

37

2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	203+
		Run III					R	Run IV				Run V		
LS2						LS3					LS4			
LHCb 40 MHz UPGRADE I		L	= 2 x 10	33	LHCb Consol UPGR/	lidate: ADE Ib		L	= 2 x 1 50 fb ⁻¹	0 ³³	LHCb UPGR/	ADE II	$ L = 1 - 2x \ 10^{34} \\ 300 \ fb^{-1} $	
ATLAS Phase I Upgr		L	= 2 x 10	34	ATLAS Phase	II UPG	RADE	L	$= 5 \times 10^{-1}$	C 0 ³⁴			HL-L $L = 5$	HC x 10 ³⁴
CMS Phase I Upgr 300 fb ⁻¹			CMS Phase	II UPG	RADE				3000 fb ⁻¹					
Bell e II				5 ab-1		L = 6	x 10 ³⁵		4	50 ab-1				

Conclusions

- LHCb is producing lots of exciting physics results
 - in many areas rare decays, CP violation, charm, spectroscopy, electroweak,
 QCD, exclusive production, heavy ion, fixed target, > 30 papers in 2021
- Flavour anomalies
 - Cautious excitement
 - More results on lepton flavour universality, and under way
- Highlights of highlights this week
 - First observation of a doubly charmed same-sign tetraquark T_{cc}^+
 - Measurement of W mass
 - Indication of intrinsic charm in proton
- LHCb upgrade
 - Huge progress during last year despite difficult circumstances
 - RICH, CALO and Muon in commissioning
 - Planning for future upgrade in ~2030 is gaining momentum

Excited Ω_c⁰ baryons

- Discovery of 5 excited Ω_c⁰ states
 - In prompt $\Xi_c^+ K^-$ production
- Observation in b-baryon production
 - $\quad \Omega_b^- \rightarrow \Xi_c^+ \ K^- \pi^-$
 - Observe 4 of 5 states and a structure at threshold
 - Measure quantum numbers
 - Spin ½ excluded at 2.5σ and 3.9σ

3100

3200

 $m(\Xi_c^+K^-)$ [MeV]

3300

3000

LHCb-PAPER-2021-007

LHCb-PAPER-2021-008

LHCb

9 fb⁻¹ BDT ≥ 0.5

40

20

Data

Total

 $B_s^0 \rightarrow \mu^+ \mu^- \gamma$

 $X_{\mu} \rightarrow h \mu \nu$ $B^{0(+)} \rightarrow \pi^{0(+)} \mu^+ \mu^-$

Very rare leptonic decay

- Helicity and CKM suppressed
- Sensitive to New Physics
- $B_{c}^{0} \rightarrow \mu^{+}\mu^{-}$

 $B(B_s^0 \rightarrow \mu^+\mu^-) = 3.09^{+0.46}_{-0.43} + 0.15_{-0.11} \times 10^{-9}$

