High-Energy QCD Matter Theory

Aleksas Mazeliauskas

CERN Theoretical Physics Department

July 27, 2021

High-energy nuclear collisions — a new direction to study QCD

High-energy physics concentrate higher energy in smaller and smaller volume. Turn to a different direction and study new phenomena *"by distributing high energy or high nucleon density over a relatively large volume."* – T.D. Lee, 1974

Unique chance to study the many-body dynamics of non-abelian gauge theory: thermalisation, transport properties, phase diagram, hadron production,...

Aleksas Mazeliauskas

QCD thermalisation in high-energy nuclear collisions

Thermalisation in QCD at weak couplings $\alpha_s \ll 1$ Berges, Heller, AM, Venugopalan (2020) [1] At the high-energy limit can use first-principles effective descriptions of QCD.

Formation of thermalised QCD matter is a natural limit of high-energy collisions.

Aleksas Mazeliauskas

aleksas.eu

Thermalisation in QCD at weak couplings $\alpha_s \ll 1$ Berges, Heller, AM, Venugopalan (2020) [1] At the high-energy limit can use first-principles effective descriptions of QCD.

Incoming nuclei

Initial state

 $t \ll 1 \, \mathrm{fm}/c$

Formation of thermalised QCD matter is a natural limit of high-energy collisions.

Pb

Aleksas Mazeliauskas

aleksas.eu

Pb

strong QCD fields $f_g(p \sim Q_s) \sim \frac{1}{\alpha_s} \gg 1$

Formation of thermalised QCD matter is a natural limit of high-energy collisions.

Aleksas Mazeliauskas

aleksas.eu

Thermalisation in QCD at weak couplings $lpha_s \ll 1$ $_{ m Berges, \, Heller, \, AM, \, Venugopalan \, (2020) \, [1]}$

At the high-energy limit can use first-principles effective descriptions of QCD.

Formation of thermalised QCD matter is a natural limit of high-energy collisions.

Aleksas Mazeliauskas

aleksas.eu

Non-thermal and hydrodynamic attractors in QCD thermalisation

- Remarkable simplification of nonequilibrium QCD evolution.
- Emergence of fluid dynamics behaviour at timescales of $\tau \sim 1/T \sim 1 \text{ fm}/c$.
- Supported by QCD kinetic theory, QFTs with gravity duals.
- Rethinking applicability of hydrodynamics.

Collective behaviour of QCD matter

Multiparticle collective flows

Produced particles show significant angular modulations v_n

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + 2v_2 \cos(2\phi) + 2v_3 \cos(3\phi) \dots \right)$$

CMS Detector Performance Plots [4]

Collective particle flow is explained by pressure gradient driven QGP expansion. Aleksas Mazeliauskas

Initial conditions in nuclear collisions: sources of fluctuations

from Giacalone, SEWM 2021 [indico]

Experimental sensitivity allows to test both large and small scale nuclear structure.

Aleksas Mazeliauskas

aleksas.eu

Hydrodynamic modelling of nuclear collisions in a nutshell

initial conditions

viscous hydrodynamics

hadron cascade

Numerically solve 2D or 3D relativistic fluid equations of motion

$$\partial_{\mu}T^{\mu\nu} = 0, \quad T^{\mu\nu} = eu^{\mu}u^{\nu} + (p + \prod_{-\zeta\partial_{\mu}u^{\mu}})\Delta^{\mu\nu} + \underbrace{\pi^{\mu\nu}}_{-\eta\partial^{(\mu}u^{\nu)}} + \dots$$

 $p\left(e\right)$ – equation of state, obtained from lattice QCD.

 η, ζ – shear and bulk viscosity – fundamental transport properties of QGP.

- difficult to extract from lattice QCD, because of sign problem.
- perturbatively calculable only at very small couplings.

NLO computations by Ghiglieri, Moore and Teaney (2018) [5, 6]

• excellent experimental data \implies can extract $\eta/s, \zeta/s$ and higher transport coefficients from particle spectra and collective flow data.

For QGP $\eta/s \sim 0.1$ (in natural units)— smallest of all known fluids!

Multi-parameter model fits to multi-observable multi-system data

Many comprehensive analyses: Novak, Novak, Pratt, Vredevoogd, Coleman-Smith, Wolpert (2013) [7], Niemi, Eskola, Paatelainen (2015) [8] Bernhard, Moreland, Bass, Liu, Heinz (2016) [9], Devetak, Dubla, Floerchinger, Grossi, Massiocchi, AM, Selyuzhenkov (2019) [10],...

Aleksas Mazeliauskas

Multi-messenger (QCD+QED) study of high-energy nuclear matter

Photon and dilepton production is sensitive to

- Chemical equilibration
- QGP properties and temperature
- Early-time expansion

Penetrating electromagnetic probes give unique window into QCD thermalisation. Aleksas Mazeliauskas High momentum transfer processes in QCD matter

High p_T parton energy loss — jet quenching

High-energy jets are suppressed in nuclear collisions compared to proton-proton

$$R_{AA} = \frac{dN_{AA}^j/dp_T}{N_{\text{coll}}dN_{pp}^j/dp_T} < 1$$

10 / 23

Medium induced gluon radiation

Baier, Dokshitzer, Mueller, Peigne, Schiff (1996) [19], Zakharov (1996) [20] and others

Partons suffers multiple soft scatterings in the medium \implies momentum diffusion

 \hat{q} – quenching parameter, property of the medium.

Finite emission formation time and interference \implies LPM suppression

Gluon radiation induces energy loss of parent parton.

For progress on double emission see Arnold, Gorda, Iqbal (2020) [21], improved opacity expansion Barata, Mehtar-Tani (2020)[22] full resummation Andres, Apolinário, Dominguez (2020) [23], non-perturbative broadening Moore, Schlichting, Schlusser, Soudi (2021) [24], vacuum and in-medium factorization Caucal, Iancu, Soyez (2020) [25], ...

Aleksas Mazeliauskas

aleksas.eu

Jets in high-energy QCD matter

Different from vacuum – need to know the space-time structure of parton shower.

There are ongoing community efforts to improve all aspects of the modelling:

- Jet-medium interactions, e.g., onset of jet-quenching
- Background medium evolution, e.g., hydrodynamics tuned to soft observables.

Casalderrey-Solana, Hulcher, Milhano, Pablos, Rajagopal (2018) [27], Andres, Néstor, Niemi, Paatelainen, Salgado (2019) [28] Zigic, Ilic, Djordjevic, Djordjevic (2019) [29], Huss, Kurkela, AM, Paatelainen, van der Schee, Wiedemann (2020) [30], JETSCAPE (2021) [31] aleksas Mazeliauskas.eu

Energy loss observables

- Inclusive jet, hadron suppression nuclear modification factor R_{AA} .
- Coincidence measurements, e.g., Z or γ tagged hadron or jet spectra I_{AA} .

Broad agreement among different models for basic observables \implies focus on controlling model systematics and more differential observables

Aleksas Mazeliauskas

Heavy quarks in QCD matter

Heavy quarks evolution in QGP

Charm and beauty quarks make excellent probes of QGP evolution

- Produced perturbatively $(m_Q \gg T)$ and at early times $t_f \sim (2m_Q)^{-1}$
- Interacts strongly with QGP during evolution: D_s diffusion coefficient.
- Quark flavour preserved can be tagged.

Focus on understanding heavy quark co-flow with the medium. Aleksas Mazeliauskas

Hidden and open heavy quark dynamics

- Bound state qq̄ dissociation and recombination open quantum system. Lindblad equation for density matrix ρ Brambilla, Escobedo, Strickland, Vairo, Griend, Weber (2021) [33] Coupled Boltzmann Transport Equations, Yao, Ke, Xu, Bass, Müller (2020) [34]
- Open heavy quark evolution several approaches: Langevin diffusion,
 Boltzmann transport, energy loss, etc.
 see Heavy-Flavor Transport in QCD Matter [indico]

contraints on heavy quark transport and thermalisation in QCD matter.

Aleksas Mazeliauskas

Charm thermalisation in Statistical Hadronization Model (SHM) Observed *thermal particle yields* with $T \approx 156.5 \text{ MeV}$ from pions to ⁴He. Multicharm hadron production is greatly enhanced, e.g., $\sim 2.7 \cdot 10^4$ times for Ω_{ccc}

ALICE 3 is ideally suited to measure multicharm baryon hierarchy. Aleksas Mazeliauskas

see EOI [37].

QCD matter in pp and $p\mbox{Pb}$ and other small systems

Two successful paradigms of hadron collisions

Arguably the first discovery at LHC: long-range 2-particle correlations in $pp_{CMS(2010)[38]}$ Now supported by *multi-particle correlations* and *strangeness enhancement* in pp and pPb.

Multiplicity as a measure of the system size

LHC: pp, pPb, XeXe, PbPb (OO, ArAr)

0-5% Pb+Pb

Do all small systems exhibit the same collective phenomena?

Challenges to partonic rescattering paradigm in small systems

Different system size dependence of parton rescattering for soft and hard probes.

Absence of jet quenching contradicts the current paradigm: collective flow \iff high- p_T energy loss.

Aleksas Mazeliauskas

What is the microscopic origin of collectivity in small systems?

Competing approaches in small systems:

- From small to large: extending HEP event generators
- From large to small: pushing macroscopic descriptions to small size limits
- Intermediate descriptions: QCD kinetic theory in small systems.

Collectivity in small systems \implies window to microscopic dynamics of QCD.

Aleksas Mazeliauskas

aleksas.eu

Light-ions at the LHC

Light-ions (e.g. O, Ar, Kr) Yellow report (2018) [17]:

- High achievable luminosity.
- Short oxygen run planned in LHC Run 3.
- *p*O: strong interest from cosmic ray physics.
- OO comparable to *p*Pb, but better geometry control.
- Many physics opportunities see OppOatLHC [indico]

Experimental projections and theory calculations show measurable energy loss signal in $10\,{\rm GeV} < p_T < 50\,{\rm GeV}.$

Huss, Kurkela, AM, Paatelainen, van der Schee, Wiedemann (2020) [41] Opportunity to discover jet quenching in small systems.

Nuclear parton distribution functions from pA

nPDFs are crucial ingredients in perturbative of QCD matter probes:

- jets, high- p_T hadrons
- heavy quark production

Precision determination of hard probes modification requires precise null baselines.

Aleksas Mazeliauskas

Summary

Experiments with nuclear collisions have revealed many new phenomena of high-energy QCD matter.

- Detailed theoretical picture of QCD thermalisation.
- Successful extraction of QGP properties from precise data.
- Strong high- p_T and heavy quark interaction with QCD matter.

Outlook:

- LHC run 3 and 4 will deliver high-statics pp, pPb and PbPb data access to rare observables, e.g., Z-tagging, bottom quark flow
- Advanced models and statistical analysis of extensive datasets

the field is ready for precision era

Small system scan: high-multiplicity pp, peripheral PbPb, pPb and light-ions. time for a unified picture of collectivity in all hadronic collisions

Bibliography I

- Jürgen Berges, Michal P. Heller, Aleksas Mazeliauskas, and Raju Venugopalan. Thermalization in QCD: theoretical approaches, phenomenological applications, and interdisciplinary connections. 2020, 2005.12299.
- [2] Wojciech Florkowski, Michal P. Heller, and Michal Spalinski. New theories of relativistic hydrodynamics in the LHC era. *Rept. Prog. Phys.*, 81(4):046001, 2018, 1707.02282.
- Paul Romatschke and Ulrike Romatschke. *Relativistic Fluid Dynamics In and Out of Equilibrium*. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 2019, 1712.05815.
- [4] CMS collaboration. Underlying event subtraction for particle flow. TWiki, 2013.
- Jacopo Ghiglieri, Guy D. Moore, and Derek Teaney.
 Second-order Hydrodynamics in Next-to-Leading-Order QCD. Phys. Rev. Lett., 121(5):052302, 2018, 1805.02663.

Bibliography II

- Jacopo Ghiglieri, Guy D. Moore, and Derek Teaney. QCD Shear Viscosity at (almost) NLO. JHEP, 03:179, 2018, 1802.09535.
- John Novak, Kevin Novak, Scott Pratt, Joshua Vredevoogd, Chris Coleman-Smith, and Robert Wolpert.
 Determining Fundamental Properties of Matter Created in Ultrarelativistic Heavy-Ion Collisions.

Phys. Rev., C89(3):034917, 2014, 1303.5769.

[8] H. Niemi, K. J. Eskola, and R. Paatelainen.

Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions. *Phys. Rev. C*, 93(2):024907, 2016, 1505.02677.

[9] Jonah E. Bernhard, J. Scott Moreland, Steffen A. Bass, Jia Liu, and Ulrich Heinz. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium. *Phys. Rev.*, C94(2):024907, 2016, 1605.03954.

Bibliography III

[10] D. Devetak, A. Dubla, S. Floerchinger, E. Grossi, S. Masciocchi, A. Mazeliauskas, and I. Selyuzhenkov.

Global fluid fits to identified particle transverse momentum spectra from heavy-ion collisions at the Large Hadron Collider. *JHEP*, 06:044, 2020, 1909.10485.

- Govert Nijs, Wilke van der Schee, Umut Gürsoy, and Raimond Snellings.
 Bayesian analysis of heavy ion collisions with the heavy ion computational framework Trajectum. *Phys. Rev. C*, 103(5):054909, 2021, 2010.15134.
- [12] Bjoern Schenke, Chun Shen, and Prithwish Tribedy. Running the gamut of high energy nuclear collisions. *Phys. Rev.*, C102(4):044905, 2020, 2005.14682.
- [13] D. Everett et al.

Multisystem Bayesian constraints on the transport coefficients of QCD matter. *Phys. Rev. C*, 103(5):054904, 2021, 2011.01430.

[14] D. Everett et al.

 $\label{eq:phenomenological constraints on the transport properties of QCD matter with data-driven model averaging.$

Phys. Rev. Lett., 126(24):242301, 2021, 2010.03928.

Bibliography IV

- [15] Charles Gale, Jean-François Paquet, Björn Schenke, and Chun Shen. Multi-messenger heavy-ion physics.
 6 2021, 2106.11216.
- [16] Maurice Coquet, Xiaojian Du, Jean-Yves Ollitrault, Sören Schlichting, and Michael Winn. Intermediate mass dileptons as pre-equilibrium probes in heavy ion collisions. 4 2021, 2104.07622.

[17] Z. Citron et al.

Report from Working Group 5: Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams.

CERN Yellow Rep. Monogr., 7:1159-1410, 2019, 1812.06772.

[18] Morad Aaboud et al.

Measurement of the nuclear modification factor for inclusive jets in Pb+Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV with the ATLAS detector.

Phys. Lett. B, 790:108-128, 2019, 1805.05635.

[19] R. Baier, Yuri L. Dokshitzer, Alfred H. Mueller, S. Peigne, and D. Schiff. Radiative energy loss of high-energy quarks and gluons in a finite volume quark - gluon plasma. *Nucl. Phys. B*, 483:291–320, 1997, hep-ph/9607355.

Bibliography V

[20] B.G. Zakharov.

Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD. *JETP Lett.*, 63:952–957, 1996, hep-ph/9607440.

[21] Peter Arnold, Tyler Gorda, and Shahin Iqbal.

The LPM effect in sequential bremsstrahlung: nearly complete results for QCD. *JHEP*, 11:053, 2020, 2007.15018.

- [22] João Barata and Yacine Mehtar-Tani. Improved opacity expansion at NNLO for medium induced gluon radiation. JHEP, 10:176, 2020, 2004.02323.
- [23] Carlota Andres, Liliana Apolinário, and Fabio Dominguez. Medium-induced gluon radiation with full resummation of multiple scatterings for realistic parton-medium interactions. *JHEP*, 07:114, 2020, 2002.01517.
- [24] Guy D. Moore, Soeren Schlichting, Niels Schlusser, and Ismail Soudi. Non-perturbative determination of collisional broadening and medium induced radiation in QCD plasmas.
 5 2021 2105 01670

5 2021, 2105.01679.

Bibliography VI

- [25] P. Caucal, E. Iancu, and G. Soyez. Jet radiation in a longitudinally expanding medium. JHEP, 04:209, 2021, 2012.01457.
- [26] Korinna C. Zapp. Jet energy loss and equilibration. Nucl. Phys. A, 967:81–88, 2017.
- [27] J. Casalderrey-Solana, Z. Hulcher, G. Milhano, D. Pablos, and K. Rajagopal. Simultaneous description of hadron and jet suppression in heavy-ion collisions. *Phys. Rev. C*, 99(5):051901, 2019, 1808.07386.
- [28] Carlota Andres, Néstor Armesto, Harri Niemi, Risto Paatelainen, and Carlos A. Salgado. Jet quenching as a probe of the initial stages in heavy-ion collisions. *Phys. Lett. B*, 803:135318, 2020, 1902.03231.
- [29] Dusan Zigic, Bojana Ilic, Marko Djordjevic, and Magdalena Djordjevic. Exploring the initial stages in heavy-ion collisions with high-p_⊥ R_{AA} and v₂ theory and data. Phys. Rev. C, 101(6):064909, 2020, 1908.11866.

Bibliography VII

 [30] Alexander Huss, Aleksi Kurkela, Aleksas Mazeliauskas, Risto Paatelainen, Wilke van der Schee, and Urs Achim Wiedemann.
 Predicting parton energy loss in small collision systems.
 Phys. Rev., C103(5):054903, 2021, 2007.13758.

[31] S. Cao et al.

Determining the jet transport coefficient \hat{q} from inclusive hadron suppression measurements using Bayesian parameter estimation.

2 2021, 2102.11337.

[32] Shreyasi Acharya et al.

Measurements of inclusive jet spectra in pp and central Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV. *Phys. Rev. C*, 101(3):034911, 2020, 1909.09718.

[33] Nora Brambilla, Miguel Ángel Escobedo, Michael Strickland, Antonio Vairo, Peter Vander Griend, and Johannes Heinrich Weber.

Bottomonium production in heavy-ion collisions using quantum trajectories: Differential observables and momentum anisotropy.

7 2021, 2107.06222.

[34] Xiaojun Yao, Weiyao Ke, Yingru Xu, Steffen A. Bass, and Berndt Müller. Coupled Boltzmann Transport Equations of Heavy Quarks and Quarkonia in Quark-Gluon Plasma. JHEP, 21:046, 2020, 2004.06746.

Bibliography VIII

[35] Shreyasi Acharya et al.

Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. Phys. Lett. B, 813:136054, 2021, 2005.11131.

- [36] Anton Andronic, Peter Braun-Munzinger, Krzysztof Redlich, and Johanna Stachel. Decoding the phase structure of QCD via particle production at high energy. *Nature*, 561(7723):321–330, 2018, 1710.09425.
- [37] D. Adamová et al. A next-generation LHC heavy-ion experiment. 1 2019, 1902.01211.
- [38] Vardan Khachatryan et al. Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC. JHEP, 09:091, 2010, 1009.4122.
- [39] Christian Bierlich, Smita Chakraborty, Gösta Gustafson, and Leif Lönnblad. Setting the string shoving picture in a new frame. JHEP, 03:270, 2021, 2010.07595.

Bibliography IX

- [40] Aleksi Kurkela, Aleksas Mazeliauskas, and Robin Törnkvist. Collective flow in single-hit QCD kinetic theory. 4 2021, 2104.08179.
- [41] Alexander Huss, Aleksi Kurkela, Aleksas Mazeliauskas, Risto Paatelainen, Wilke van der Schee, and Urs Achim Wiedemann.
 Discovering Partonic Rescattering in Light Nucleus Collisions.
 Phys. Rev. Lett., 126(19):192301, 2021, 2007.13754.
- [42] Jasmine Brewer, Aleksas Mazeliauskas, and Wilke van der Schee. Opportunities of OO and pO collisions at the LHC. 2021, 2103.01939.
- [43] ALICE physics projections for a short oxygen-beam run at the LHC. May 2021.