

- Standard Model (SM) predicts Higgs boson (trilinear) self-coupling (λ_{HHH}).
- λ_{HHH} is crucial ingredient in validating the Brout-Englert-Higgs (BEH) mechanism as well as in understanding the shape of Higgs potential.
- Deviation of λ_{HHH} from SM predicted value is an indication of new physics, which is measured by self-coupling modifier $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$.

- At $\sqrt{s} = 13$ TeV, the *HH* production cross-section (σ_{HH}) is ≈ 33 fb (gluon-gluon fusion, ggF, mode + vector boson fusion, VBF, mode).
- Many Beyond-the-Standard-Model theories predict an enhancement in σ_{HH} .
- Both ggF and VBF production modes are considered for $b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$ analyses, and integrated luminosity is $\mathcal{L} = 139$ fb⁻¹. $HH \rightarrow b\bar{b}\tau^+\tau^- \text{Analysis}^{[2]}$
 - Targets $b\bar{b}\tau_{lep}\tau_{had}$ and $b\bar{b}\tau_{had}\tau_{had}$ final states.
 - Events selected by single lepton (SLT), lepton plus tau (LTT), single tau (STT), and di-tau (DTT) triggers.
 - Uses BDT and NNs to separate signal from background.

Observed (expected) limits @ 95% CL: $\sigma_{\rm ggF+VBF}(\rm HH) < 4.7 (3.9) \times \sigma_{\rm ggF+VBF}^{SM}(\rm HH)$ Improvement by a factor of 2 of expected limits, over the partial dataset results, due to analysis optimization

 $HH \rightarrow b\bar{b}\ell\nu\ell\nu$ Analysis^[4]

• $\mathcal{L} = 139 \text{ fb}^{-1}$ analysis puts an observed (expected) limit on σ_{HH} at 95% CL of: $\sigma_{\rm ggF}({\rm HH}) < 40 \ (29) \times \sigma_{\rm ggF}^{\rm SM}({\rm HH})$

Searches for non-resonant Higgs boson pair production at $\sqrt{s} = 13$ TeV with ATLAS detector at the LHC

Roshan Joshi Supervisors: Harris Kagan, Suyog Shrestha

Motivation

• A direct way of measuring λ_{HHH} is via observation of non-resonant Higgs boson pair (HH) production. It can also be used to measure κ_{2V} which is VVHH coupling modifier.

References

[1] ATLAS Collaboration, Combination of searches for Higgs boson pairs in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Physics Letters B 800 (2020) 135103, arXiv:1906.02025 [hep-ex]. [2] ATLAS Collaboration, Search for resonant and non-resonant Higgs boson pair production in the $b\bar{b}\tau^+\tau^-$ decay channel using 13 TeV pp collision data from the ATLAS detector, ATLAS-CONF-2021-030, 2021. [3] ATLAS Collaboration, Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATLAS-CONF-2021-016, 2021. [4] ATLAS Collaboration, Searches for non-resonant Higgs boson pair production in the $bb\ell\nu\ell\nu$ final state with the ATLAS detector in pp collisions at $\sqrt{s} = 13$ TeV, Physics Letter B 801 (2020) 135145, arXiv: 1908.06765 [hep-ex]. [5] ATLAS Collaboration, Search for the $HH \rightarrow b\bar{b}b\bar{b}$ process via vector-boson fusion production using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, JHEP 07 (2020) 108, arxiv:2001.05178[hep-ex].

$HH \rightarrow b\bar{b}\gamma\gamma$ Analysis^[3]

- Events selected using di-photon triggers.
- Events are separated into high mass and low mass regions using $m_{b\bar{b}\gamma\gamma}^{\star} = m_{b\bar{b}\gamma\gamma} m_{b\bar{b}} m_{\gamma\gamma} + 250 \text{GeV}.$
- In each mass region, BDT is trained to discriminate between signal and background, and the BDT score is used to divide it into two categories.
- κ_{λ} scan is also performed in addition to setting limit on σ_{HH} .

Observed (expected) limits @ 95% CL : $\sigma_{\rm ggF+VBF}(\rm HH) < 4.1 \ (5.5) \times \sigma_{\rm ggF+VBF}^{\rm SM}(\rm HH)$ $-1.5 (-2.4) < \kappa_{\lambda} < 6.7 (7.7)$

Improvement by about a factor of 2 of expected limits, over the partial dataset results, due to analysis optimization

(b) Upper limits at 95% CL on $\sigma_H H$ normalized to its SM expectation from $b\bar{b}\tau^+\tau^-$, $b\bar{b}\gamma\gamma$, & $b\bar{b}\ell\nu\ell\nu$ searches at $\mathcal{L} = 139$ fb⁻¹.

$HH \rightarrow b\bar{b}b\bar{b}$ VBF Analysis^[5]

• It can be sensitive to κ_{2V} . Observed (expected) limits of $\mathcal{L} = 126 \text{ fb}^{-1}$ analysis at 95% CL are:

 $-0.43 (-0.55) < \kappa_{2V} < 2.56 (2.72)$

