Sub-MeV Dark Matter Searches with EDELWEISS: results and prospects

H.Lattaud on behalf of the EDELWEISS collaboration IP2I,CNRS/IN2P3.

Recent low-mass results : PRL 125, 141401 (2020)

A wide search playground

Edelweiss subGeV program

- For event by event NR ID down to 1 GeV/c² and reach 10⁻⁴³ cm² σ_{phonon} = 10 eV and σ_{ion} = 20 eVee
- Ionization resolution is key to particle identification + surface rejection : Cold HEMT preamp + low capacitance wiring (joint development with Ricochet) [JLTP 199, 798 (2020)]

- Reducing detector mass is crucial to reach these goals :
 EDELWEISS-Surf [PRD 99 082013 (2019)] 33 g Ge bolometer.
- Applying HV to amplify signal, lower threshold and separate NR /ER : Electron-DM results [PRL 125, 141401 (2020)]

78 V applied onto 33 g Ge bolometer.

Amplifying signal : Neganov-Luke effect

• Amplification of heat signal due to charges drifting in electric field

$$E_{heat} = E_{recoil} + \frac{E_{Luke}}{E_{Luke}} = E_{recoil} + \frac{N_p}{\Delta V}$$
$$E_{heat} = E_{recoil} (1 + \frac{\Delta V}{\epsilon}) \quad particle-ID \ dependent$$

- Amplification proportional to ionization signal and to applied bias
 - Loss of discrimination as heat is dominated by ionization signal
 - Resolution gain by a factor (1+V/3) for e⁻ signals

EDELWEISS SubGeV two modes

Low-voltage objectives are part of a common effort with the Ricochet collaboration, dedicated to studying CENNS at reactors supported by the ERC-CENNS Starting Grant (2019-2024)

SELENDIS project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 838537

RED30 detector: HV operation [PRL 125, 141401 (2020)]

- Similar to EDELWEISS-surf 33 g Ge detector + Al electrodes
- 1 Ge-NTD sensor (1.6 mm³) glued directly on bottom Ge surface
- Flat surface electrodes: lithographed Al grid (500 µm pitch, 4% coverage) to reduce phonon trapping
- Outer rings of the grid act as separate guard electrodes (outer ~2 mm)
- No side electrodes on this prototype (mitigation of risk of leakage at HV)

EDELWEISS-III Setup

- LSM: Deepest site in Europe 4800 m.w.e., 5 μ/m²/day
- Clean room + deradonized air
 Radon monitoring down to few mBq/m³
- Active muon veto (>98% coverage) on mobile shield
- External (50 cm) + internal polyethylene shielding Thermal neutron monitoring with ³He detector
- Lead shielding (20 cm, including 2 cm Roman lead)
- Selection of radiopure material

Cryostat can host up to 40 kg detector at 18 mK

Performance of the EDELWEISS-III experiment for direct dark matter searches

[JINST 12 (2017) P08010]

Detector resolution

- Dataset : 2.44 days (at 78V) blinded below 1 keV
 - Baseline resolution σ = 42 eV (1.60 eVee)
 - Stable resolution (from random trigger data)
- Reference sample: 1.3 days before/after search data
- Poisson upper limit assuming all events are DM candidates, no background subtraction
- Determine most sensitive range (Region Of Interest) using 1.3 day sample non-blinded data (smoothed with KDE) recorded just before/after the search
- Signal calculation: QEdark
 [R. Essig et al., JHEP05 (2016) 046]
 charge quantization as in SuperCDMS,
 [PRL 121 (2018) 051301]

Limit setting strategy

- 90%CL Poisson upper limit on rate in fixed energy range on blinded data (ROI)
- Applied same fixed range to blinded data
- Data below 10 eVee probably dominated by noise blob (readout noise + dark current?)
- Despite not being able to resolve individual number of e-h pairs, observed rates set useful limits on DM models
- $M_{DM} < 1$ MeV: signal ~ 1 e⁻h⁺ pairs
- $M_{DM}^{SM} >> 10$ MeV: limit driven by n= 3 to 4 pairs

Results : DME scattering

- Sensitivity extends into the domain of sub-MeV DM particles: with resolution $\sigma = 0.53 e^-h^+$ pairs, there is some sensitivity to single e^- events
- Despite being a first prototype, current sensitivity of 33g Ge bolometer already comparable or better than CDMS 1 g Si bolometer with 10X better resolution
- This is due to lower background level in the 33g bolometer thanks to LSM low-background environment and smaller surface/volume ratio

Results : Dark photon

- Smaller gap of Ge wrt Si helps (despite factor x25 better single-electron background in SENSEI) [PRL 125, 141401 (2020)]
- Competitive and complementary with Si searches below 5 eV, thanks to different photoelectric cross-section at low energy and lower gap

Limitation from Heat Only background

- HO nature of dominant background above 400 eV (15 eVee at 78V)
- Present results limited by low energy HO background.
- Systematic studies of HO population: no clear dominant source identified yet
- Most interesting lead significant reduction in detectors with innovative heat • sensor: NbSi thin film Transition Edge Sensors
- <5 eVee resolution obtained (66 V) at LSM on a 200 g prototype (σ phonon<110 eV)

Future HV detectors : CRYOSEL

- CRYOSEL : 30g Ge detector, $\sigma_{\rm phonon}$ = 20 eV, sustaining 200 V bias
- SSED detector able to discriminate moving charges in events. Expect drastic rejection of HO event
- Projections give order of magnitude of improvement

Conclusion

- Explore sub-GeV with event-by-event rejection
- Go to lower mass (sub-MeV for ER signals) with NL boost
- 20 eVee ionization resolution (synergy with Ricochet)
- 10 eV phonon resolution (17.3 eV achieved)
- 100 V (achieved on 800g; σ =0.53 e⁻h⁺ pairs on 33 g)
- Heat-Only event reduction : not under control yet! ...
- Analysis ongoing with new NbSi TES.
- CRYOSEL project : HV 30g Ge detector able to reject Heat Only event

Backups

EDELWEISS-Surf Above-ground DM search

- Context: EDELWEISS and Ricochet common R&D for low-threshold detectors performed in easy-access surface lab @ IPN-Lyon
- <1 m overburden: ideal for SIMP search (strongly interacting DM)
- Dry cryostat (CryoConcept) with <30h cool-down (fast turnover ideal for detector R&D) [NIM A858 (2017) 73]
- < mg/√Hz vibration levels (spring-suspended tower).
 [JINST 13 (2018) No.8 T08009]
- RED20 : 33g Ge with NTD sensor, with no electrodes No ER/NR discrimination, but no uncertainty due to ionization yield or charge trapping)
- 55Fe source for calibration

Detector Performance

 Detector characterization using ⁷¹Ge 10.37 keV Line activated AmBe neutron source.

Calibration charge collection fiducial volume.

- April 5st-6th: DM search at highest stable bias (78V) with reduced (but still visible) 71 Ge activation σ = 42 eV (1.60 eV_{ee})
- April 10th : in-situ re-activation to confirm the stability of the detector response and obtain reference sample of 10.37 keV events to be used in the data analysis of the DM search data

Linking above and underground searches

Since then: SuperCDMS-CPD, Arxiv:2007.14289

Efficiency

- 10 keV pulse injected onto data stream.
- Pulse taken from event bank.
- Pulse rescaled to desired energy, allowing a refined scan.

Toward 20 eVee ionization resolution

- Transition from JFET to HEMT
 [Phipps:1611.09712, and arXiv:1909.02879]
- Lower intrinsic noise + reduce cabling capacitance by working at 1K or 4K
- Data driven HEMT models show that the goal of 20 eV_{ee} is reachable with ~20 pF total input impedance
- Ongoing HEMT characterizations

- HEMT-based preamp tests end of 2019
- Cryogenics + cabling challenges ahead
- Work done in synergy with the Ricochet-CryoCube collaboration

Optimization of 33g FID design: large fiducial volume & low capacitance