Current Status and Future Plans for SuperCDMS SNOLAB

Yan Liu for the *SuperCDMS* collaboration July 26, 2021

Worldwide Dark Matter Direct Detection

SuperCDMS SNOLAB Contribution 10¹¹ **10⁹** spin-independent nuclear recoil [dd] 10⁷ nucleon $\sigma_{\rm SI}$ **10**⁵ Xenon1 **10**³ **EDELWEISS** 10¹ 10-1 **10**⁻³ Matter **CDMSlite** 10⁻⁵ CDE DarkSid ----SuperCDMS 'EDELWEISS-10⁻⁹ SuperCDMS Dark **Neutrino discovery** Xenon1 Xenon1 100 10

https://supercdms.slac.stanford.edu/dark-matter-limit-plotter

Many more detection channels! dark matter mass • iZIP detectors > 3 GeV => iZIP detectors with low threshold > 1 GeV => 0.3 GeV ~ 10 GeV • HV detectors => • HV detectors 0.5 MeV ~ 1 GeV => 1 eV ~ 0.5 MeV =>

- Nuclear recoil (NR) channel
- Electron recoil (ER) channel
- Absorption channel
 - HV detectors

CDMSlite LIP search

- Lightly Ionizing Particles (Fractionally-Charged particle with small charge)
- Lose energy at a rate proportional to f^2 (f is the fraction of charge)
- first limit for LIP with $f < 3 \times 10^5$, and strongest limit to date for f < 1/160

SuperCDMS SNOLAB Technology

- Read out both charge and phonon channels
- NR and ER discrimination for background rejection

- Read out only phonon channels
- Superb energy resolution and low threshold
 - Recoil energy resolution ~ 10 eV
- Rich position information

SuperCDMS SNOLAB Technology

iZIP

- Charge measured by HEMTs
- Phonons measured by TESs
- Ratio of charge/phonon is indicative of interaction type (NR or ER)

HV

- Phonons measured by TESs
- All energy gets converted to phonons - signals are amplified through the Neganov-Trofimov-Luke effect*

★ B. Neganov and V. Trofimov, Otkrytia i Izobret. 146, 7 215 (1985). 7

SNOLAB

One of the deepest underground clean labs • significant reduction of muon flux

CUTE

SuperCDMS

Radon filter

Clean

room

Backup cooling (ice)

Access

drift

UPS

- 2 Towers: 10 Ge, 2 Si
 - Complementary target isotopes.
 - Ge for better sensitivity and Si for better mass reach
 - Operational temperature < 30 mK for unparalleled resolution

• 2 Towers: 8 Ge, 4 Si

Installation underway. Science data-taking expected to start 2022!

CUTE @ SNOLAB

- Cryogenic Underground TEst
 - Operational temperature comparable to SuperCDMS **SNOLAB**
 - Capacity up to one full tower
 - Quick fridge turnaround
 - Ideal testbed for SuperCDMS **SNOLAB** detectors

First HV detector being commissioned right now!

Conclusions

- SuperCDMS SNOLAB is well-positioned to explore the uncharted parameter space in dark matter direction detection.
- Thanks to the variety of the detector technologies, dark matter can be detected via many channels, including nuclear recoil and electron recoil.
- SuperCDMS SNOLAB expects to start data taking in the very near future with an initial load of four towers.
- CUTE can play an important role in both the early science output as well as detector characterization.

