

NUCLEAR EMULSIONS FOR WIMP SEARCH WITH A DIRECTIONAL MEASUREMENT

EPS-HEP Conference, Jul 26th 2021

Giovanni De Lellis Università degli Studi di Napoli Federico II INFN Napoli

NEWSdm Collaboration

80 scientists 14 Institutes

JAPAN Chiba Nagoya Toho

ITALY LNGS University and INFN Napoli INFN Roma

SOUTH KOREA Gyeongsang University

TURKEY

METU Ankara

RUSSIA

LPIRAS Moscow JINR Dubna SINP MSU Moscow INR Moscow Yandex School of Data Analysis

C*

Website: <u>news-dm.Ings.infn.it</u>

Outline

- Physics motivation
- Nano Imaging Trackers
- Super-resolution readout
- Machine learning techniques to nanometric image analysis
- Underground facility and current setup
- Neutron detection and measurements with an equatorial mount
- Conclusions

WIMP directional detection

- Strong correlation between the direction of WIMP and scattered nuclei → strong signature and unambiguous proof of the galactic DM origin
- Unique possibility to overcome the "neutrino floor", where coherent neutrino scattering creates an irreducible background
- Nuclear Emulsion is a high-density solid-state medium \rightarrow large mass with a compact detector

Nuclear emulsion: detection principle

- 1. Ionization induced by a particle
 - *–* 2.6 *eV* band gap
- 2. Electrons trapped at a lattice defect on the crystal surface
 - Attract interstitial silver ions
 - Produce a "latent image" = Ag_n
- 3. Chemical amplification of signal
 - Development \rightarrow silver filaments
 - $10^7 10^8$ amplification
- 4. Dissolve crystals
- 5. Observe it at optical microscopes

NIT: Nano emulsion Imaging Trackers

A long history, from the discovery of the Pion (1947) to the discovery of $v_{\mu} \rightarrow v_{\tau}$ oscillation in appearance mode (OPERA, PRL 115 (2015) 121802)

- Nuclear emulsions: AgBr crystals in organic gelatine
- Passage of charged particle produce latent image
- Chemical treatment make Ag grains visible

- New kind of emulsion for DM search
- Smaller crystal size

Track lengths of nuclear recoils vs WIMP mass

Inaccessible with standard optical techniques due to diffraction limit

Need super-resolution to measure tracks shorter than 200 nm

New optical techniques at the nanometric scale

Phase 1: shape analysis

• Elliptical fit to measure the shape anisotropy

Correlation between track lengths measured by X-ray microscopy and ellipticity obtained with optical analysis Correlation between readout efficiencies and track lengths for different ellipticity thresholds

100 keV Carbon

Phase 2: optical readout beyond the diffraction limit

■ Idea: use the **plasmon resonance** effect to overcome the diffraction limit:

- generated by a light wave trapped within conductive nanoparticles smaller than the wavelength of light
- resonant frequency strongly depends on the composition, size, geometry, dielectric environment and distance between nanoparticles
- occurs in the visible region for Ag and Au nanoparticles!
- improve resolution by analyzing scattered light polarization and spectrum

Super resolution: two-dimensions

NIM A 824 (2016) 600-602

11

Sci. Rep. 10 (2020) 18773

Sci. Rep. 10 (2020) 18773

SR-SEM comparison: Event Length

Accuracy: 28 nm ≈ pixel size (27.5 nm) Resolution: 80 nm (Nyquist theorem)

Pearson Coefficient	Matched	Unmatched
Length	0.912	-0.009
Width	0.713	-0.007

3D measurement

International Patent No. W0/2018/122814

Z reconstruction with machine learning: Convolutional Neural Network

- Each event is a doublet of images plus the Z coordinate
- 2 images (500 nm apart) are merged in a single larger one
- The output is the estimated Z coordinate

Sampling step of 250 nm along Z

Wavelength dependency of plasmon resonance

100 nm

60 nm

20 nm

Plasmon response for α and C tracks

Sense recognition with color Machine Learning approach

Master thesis Marianna Fusco, Naples, 2021

Realistic simulation of images at the nanometric scale

Machine learning application for signal/noise discrimination

Realistic simulation of nanoparticle images

- Generate a 3D model of the object to be simulated (filaments, nano-particles)
- Use discrete dipole approximation to obtain optical images (ADDA, HoloPy)
- Tune the parameters and check the simulation by comparison with real samples

HoloPy: DDA for holography in Python https://github.com/manoharan-lab/holopy

Use ADDA for scattering calculations: <u>https://github.com/adda-team/adda</u>

Silver spheres

20

Simulation of two silver filaments

0 degree (a) [µm] 0.8 120 -100 <u>208</u> 0.6 60 00 × 0.4 0.2 50 0.0 20 40 *x, voxels* 80 0.2 0.4 0.6 10 y 60 degree 100 120 0 [µm] (c) [µm] 0.62 **-** 0-180 0.8 0.60 0.6 0.58 × 0.56 0.4 0.54 0.2 0.52 0.0 0.50 0.2 0.4 0.6 0.46 0.48 0.50 0.52 0.54 0.56 у [µm]

ML analysis results

https://arxiv.org/pdf/2106.11995.pdf

 Fog/dust reduction factor and efficiency for different thresholds on ML probability-like output on validation data

	Bar	shift	NEW	/Snet	Shape analysis
	Validation	Test	Validation	Test	
			Signal efficiency		
C30keV	$25.3 \pm 1.5\%$	$25.5 \pm 1.7\%$	$29.3 \pm 3.9\%$	$16.2 \pm 3.1\%$	$1.7 \pm 0.1\%$
C100keV	$38.0 \pm 1.8\%$	$38.2 \pm 1.2\%$	$36.5 \pm 3.4\%$	$37.4 \pm 3.3\%$	$29.7\pm0.7\%$
		Backg	ground rejection power		
Fog	0.32 ± 0.02	0.39 ± 0.02	$(2.4 \pm 0.74) \cdot 10^{-3}$	$(4.2 \pm 1.3) \cdot 10^{-4}$	0.01

22

Emulsion facility and current setup underground

Emulsion facility at LNGS Hall F

- Work carried out in the facility:
 - Installation of containment vessels under the floor
 - Improvement of electric system
 - Installation of a thermostatic chamber
- Emulsion production machine
- Access to the emulsion facility since December 2020

Development room

Gel production room

Gel production machine produced in Japan and certified compliant to EU safety

NEWSdm: current setup

- Experimental setup in Hall C, close to Borexino
- Assembly of the setup in March 2021
- Test measurements ongoing

Future facility for NEWSdm: 10kg and beyond

Emulsion facility and shielding with an equatorial telescope

Additional data supporting the proof of concept

Sub-MeV neutron measurement

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Neutron	Distance	Angle	$E_{n,AIST}$	Flux	Exposure time
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		source	(cm)	(degrees)	(keV)	$(n \ cm^{-2} \ s^{-1})$	(hour)
Sample2Li(p,n)Be10020 540.5 ± 12.7 791 ± 26 5.68 Sample3T(p,n)He5016 822.5 ± 16.7 908 ± 30 6.92	Sample1	Li(p,n)Be	100	60	405.0 ± 9.3	361 ± 12	5.68
Sample3 T(p,n)He 50 16 822.5 ± 16.7 908 ± 30 6.92	Sample2	Li(p,n)Be	100	20	540.5 ± 12.7	791 ± 26	5.68
	Sample3	T(p,n)He	50	16	822.5 ± 16.7	908 ± 30	6.92

$$E_p = 41.6 + 527 \times R_p^{1/2} - 432 \times R_p^{1/3}.$$

$$E_{n,\text{mes}} = \frac{E_p}{\cos^2 \theta_p}$$

PTEP n. 4 (2021) 043H01, 10 Mar 2021

Neutron measurement at LNGS surface

Exposure at 4° C, lasting for ~140 hours, equivalent to 3.2 g days

	Flux @0.4-1.0 MeV $[/cm^2/sec]$
Data	$(1.0\pm0.2)\times10^{-3}$
Simulation	1.5×10^{-3}

- Explored energy range [0.4-1] MeV
- Upper bound (12.5 μm) for proton containment in the emulsion sensitive layer

NEWSdm intermediate and final goals

- First directional dark matter detector with a 10 kg solid target
- Explore the DAMA region with a completely different technique based on the *visual* observation of recoil tracks in emulsion
- First high-sensitivity spin-independent measurement with a directional approach
- First step in the application of the emulsion technology, scalable to larger masses
- · Longer term: overcome the neutrino floor

90% C.L. upper limits for the NEWSdm detector with an exposure of 10 kg year in the zero-background hypothesis

90% C.L. upper limits for the NEWSdm detector with an exposure of 10 ton year in the zero-background hypothesis

30

THANK YOU FOR ATTENTION!