Searches for dark matter with the ATLAS detector

Jona Bossio (CERN)

on behalf of the ATLAS Collaboration

EPS-HEP2021 | 26-30 July 2021

Standard Model of particle physics

Overview of Dark Matter models

Jona Bossio (CERN)

Outline of the talk

- X + MET searches
 - Jet + MET
 - $H(b\overline{b}) + MET$
- DM + Heavy Flavour
 - DM + t
 - DM + $t\overline{t}$
- Brand new results:
 - Z(@)+MET NEW
 - Combination of 2HDM+a results
- NEW
- $Z(\mathcal{U})+H(b\overline{b})+MET$ within NMSSM

Jet + MET

<u>Background estimations</u>: V+jets, $t\bar{t}$ and single-t: dedicated Control Regions (CRs). Multijets: jet smearing method in data <u>Event selection</u>: MET> 200 GeV, p_{T}^{jet} >30 GeV & $|\eta|$ <2.8 ($p_{T}^{\text{lead jet}}$ >150 GeV & $|\eta^{\text{lead jet}}|$ <2.4), $\Delta \phi$ (jet, p_{T}^{miss}) cut to reduce multijet contribution <u>Results</u>: Simultaneous and binned profile likelihood fit to the p_{T}^{recoil} distribution (SR + 5 CRs)

Interpretation in terms of DM model with Dirac DM: upper limits at 95% CL

Jona Bossio (CERN)

26-30 July 2021 EPS-HEP2021

Search for dark matter in the context of 2HDM+a

arXiv:2011.09308 submitted to Eur. Phys. J. C.

Targetting DM+t processes, but also sensitive to DM+tt:

- Low m_{H±}: dominated by DM+t
- High m_{H+}: dominated by DM+tt

 $\frac{\text{Main backgrounds}}{\text{tj}_{11}: t\overline{t} \text{ and } W+\text{jets}}$ $\text{tW}_{11}: t\overline{t} \text{ and } W+\text{jets}$ $\text{tW}_{21}: t\overline{t}, t\overline{t} \text{ Z and } tWZ$

Jona Bossio (CERN)

Search for dark matter in the context of 2HDM+a

arXiv:2011.09308 submitted to Eur. Phys. J. C.

 $\mathbf{tW}_{\mathbf{y}}$: $t\overline{t}$, $t\overline{t}Z$ and tWZ

 $m_{\gamma} = 10 \text{ GeV}, g_{\perp} = 1$

 $\sin\theta = 1/\sqrt{2}$, $\tan\beta = 1$

500

 $m_{\mu\pm} = m_{\mu} = m_{\Lambda}$

600

m_a [GeV]

600

400 ⊑ 100

Jona Bossio (CERN)

200

300

400

600

400 -100

26-30 July 2021 EPS-HEP2021

300

200

400

 $m_r = 10 \text{ GeV}, g_r = 1$

 $\sin\theta = 1/\sqrt{2}, \tan\beta = 1$

500

 $m_{\mu^{\pm}} = m_{\mu} = m_{\Delta}$

600

m_a [GeV]

JHEP 04 (2021) 174 JHEP 04 (2021) 165 arXiv:2102.01444 arXiv:2012.03799

 $\{\max[m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T},1},\mathbf{q}_{\mathrm{T},1}),m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T},2},\mathbf{q}_{\mathrm{T},2})]\}$ $m_{T2}(\mathbf{p}_{T,1}, \mathbf{p}_{T,2}, \mathbf{p}_{T}^{miss}) =$ min $\mathbf{q}_{T,1} + \mathbf{q}_{T,2} = \mathbf{p}_T^{miss}$ $m_{T^2}^{\ell\ell} = m_{T^2}(\mathbf{p}_{T}(\ell_1), \mathbf{p}_{T}(\ell_2), \mathbf{p}_{T}^{miss})$

Validation Regions

ATLAS

√s = 13 TeV, 139 fb

2-body selection

Event

10³

10²

10

Dedicated selection/analysis for each decay mode

<u>Spin-0 mediator DM model</u>: Mediator (scalar ϕ or pseudoscalar a) is produced in association with a top-quark pair and decays to a pair of DM particles

\downarrow All plots are for the analysis with 2 leptons \rightarrow

Upper limits are calculated at 95% CL on the ratio of the production cross-section for the spin-0 mediator model to the theoretical cross-section

26-30 July 2021 EPS-HEP2021

tŤ

Signal Regions

Z+iets

Diboson FNP

Data

Others

Events 1000 (🖉)+MET | Higgs portal ATLAS Preliminary Data $B(H \rightarrow inv) =$ $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹ ZZ WZ 800 - SR Z+iets Non-res. ATLAS-CONF-2021-029 Uncertainty 600 DM-SM interactions mediated by Higgs boson: coupling to DM enhances H→invisible decays 400 200 Results translated into a spin-independent DM-nucleon elastic scattering cross-section limit and are compared to direct searches Data/Pred. $\sigma_{\sf WIMP-nucleon}$ [cm²] $B(H \rightarrow \text{inv}) < 0.15$ **ATLAS** Preliminary 0.8 Assuming Higgs portal י 10⁻⁴⁰ י All limits at 90% CL scenarios where the $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ BDT 125 GeV Higgs boson 10⁻⁴² · decays to a pair of DM particles that are either Observed upper limit on scalars or Majorana 10^{-44} the branching ratio of a fermions SM-like Higgs boson to 10⁻⁴⁶ invisible particles **Higgs Portal** Other experiments Scalar WIMP XENON1T MIGD 2020 10⁻⁴⁸ · DarkSide-50 2018 😽 Majorana WIMP LUX 2017 PandaX-II 2020 KENON1T 2018 BR(H→inv) < 18% at a 95% CL 10⁻⁵⁰ 10^{2} 10^{3} 10

Jona Bossio (CERN)

m_{WIMP} [GeV]

Z(U)+MET | Simplified model + 2HDM+a ATLAS-CONF-2021-029

Jona Bossio (CERN)

[GeV]

Combination of 2HDM+a results

NEW A

ATLAS-CONF-2021-041

Summary of searches for DM produced in extended Higgs sectors

New w.r.t previous DM summary results [JHEP05(2019) 142]:

- Reinterpretation of H[±]tb search in the context of DM models
- Statistical combination of MET+h($b\overline{b}$) and MET+Z($\ell \ell$) (which are complementarity and share comparable sensitivity)
- Most sensitive searches updated to full Run 2 luminosity

Jona Bossio (CERN)

Z(𝔅)+H→bb+MET HDBS-2018-07

Search targets events from ZH production in an Next-to-MSSM scenario where $H \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$ with $\tilde{\chi}_2^0 \to a \tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ are the lightest neutralinos, *a* is an additional pseudo-scalar Higgs boson (where $a \rightarrow b\overline{b}$ dominates)

Event selections:

- Jets \geq 2 (1 of the 2 leading p_{T} jets must be b-tagged)
 - Requiring only 1 b-tagged jet is a trade-off b/w signal acceptance and background rejection
- MET > 100 GeV
- $20 < m_{ii}$ [GeV] < 120 (using the two leading p_T jets)
- $0.8 < (p_{j_1}^{\mu_j} + \text{MET}) / p_{\tau}^{\ell_j} < 1.2 \text{ (reduces } t\overline{t} \text{ background)}$

Main backgrounds:

- Z + heavy-flavour (bottom and charm) jets and $t\overline{t}$
- → their contributions are estimated from data in CRs
- m_{ii} is used as the final discriminant in a binned likelihood fit

Jona Bossio (CERN)

Conclusions

- A large number of searches for DM candidates has been performed by ATLAS with no significant excess found
 - Various models from several signatures investigated: Ο
 - mono-X, resonances, $H \rightarrow inv$, SUSY, 2HDM, etc.
- These analyses are complementary with non-collider/direct searches
- More searches are in progress with full Run 2 data (stay tuned!)
- Huge prospects for DM searches in HL-LHC:
 - ATL-PHYS-PUB-2018-038, ATL-PHYS-PUB-2018-043, ATL-PHYS-PUB-2018-036, ATL-PHYS-PUB-2018-048, etc Ο

26-30 July 2021 EPS-HEP2021

Jona Bossio (CERN)

Jona Bossio (CERN)

$\frac{Z(\ell) + H \rightarrow b\overline{b} + MET}{HDBS - 2018 - 07}$

	SR	CRZ	CRTop	VRMET			
Number of leptons	2						
Number of jets	≥ 2						
Number of <i>b</i> -tagged jets	≥ 1						
Dilepton $p_{\rm T}$ [GeV]	> 40						
$p_{\rm T}$ fraction	[0.8, 1.2]						
Dilepton mass [GeV]	[81, 101]	[81, 101]	[50, 81] or > 101	[81, 101]			
$E_{\rm T}^{\rm miss}$ [GeV]	> 100	[60, 100]	> 100	> 50			
Dijet mass [GeV]	[20, 120]	[20, 120]	[20, 120]	> 150			

Z(**ℓ**)+H→b**b**+MET HDBS-2018-07

Search targets events from ZH production in an Next-to-MSSM scenario where $H \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_1^0$ with $\tilde{\chi}_2^0 \rightarrow a \tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ are the lightest neutralinos, *a* is an additional pseudo-scalar Higgs boson (where $a \rightarrow b\overline{b}$ dominates)

Jona Bossio (CERN)

Jet + MET

Comparing with direct searches

Comparison of ATLAS limits (black line) on the spin-dependent WIMP--proton scattering cross section (left) and on the spin-dependent WIMP--neutron scattering cross section (right) as a function of the WIMP mass, in the context of the simplified model with axial-vector couplings

Jona Bossio (CERN)

Jet + MET

Jona Bossio (CERN)

Requirement	SR	$W \rightarrow \mu \nu$	$Z \rightarrow \mu \mu$	$W \rightarrow ev$	$Z \rightarrow ee$	Тор	arXiv:102.10874
Primary vertex		at least one w	with ≥ 2 associated	ted tracks with	$p_{\rm T} > 500 \mathrm{MeV}$		1
Trigger	$E_{ m T}^{ m miss}$		single-electron		E _T ^{miss} , single- electron		
$p_{\mathrm{T}}^{\mathrm{recoil}}$ cut	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	$ \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}(\mu) > 200 \text{ GeV}$	$ \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}(\mu\mu) > 200 \text{ GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(e) > 200 \mathrm{GeV}$	$ \mathbf{p}_{T}^{miss} + \mathbf{p}_{T}(ee) > 200 \text{ GeV}$	$\begin{aligned} \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \\ \mathbf{p}_{\mathrm{T}}(\mu) > \\ 200 \mathrm{GeV} \mathrm{or} \\ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \\ \mathbf{p}_{\mathrm{T}}(e) > \\ 200 \mathrm{GeV} \end{aligned}$	
Jets		uŗ	p to 4 with $p_{\rm T}$ >	$30 \mathrm{GeV}, \eta < 2$	2.8		-
$ \Delta \phi(\text{jets}, \mathbf{p}_{\text{T}}^{\text{recoil}}) $		> 0.4	(> 0.6 if 200 Ge	$eV < E_{\rm T}^{\rm miss} \le 23$	50 GeV)		-
Leading jet		$p_{\rm T}$ >	> 150 GeV, $ \eta <$	$< 2.4, f_{\rm ch}/f_{\rm max}$	> 0.1		
<i>b</i> -jets	any	none	any	none	any	at least one	-
Electrons or muons	none	exactly one muon, with $p_{\rm T} >$ 10 GeV, 30 < $m_{\rm T} <$ 100 GeV; no electron	exactly two muons, with $p_{\rm T} >$ 10 GeV, 66 < $m_{\mu\mu} <$ 116 GeV; no electron	exactly one electron, tight, with $p_T >$ 30 GeV, $ \eta \notin$ (1.37, 1.52), tight isolation, $30 < m_T <$ 100 GeV; no muon	exactly two electrons, with $p_T >$ 30 GeV, $66 < m_{ee} <$ 116 GeV; no muon	same as for $W \rightarrow \mu v$ or same as for $W \rightarrow ev$	
τ -leptons			nc	one			
Photons	none					10	

$H(b\overline{b}) + MET$

Schematic view of the eleven bins in the signal region. The shading indicates the signal to background ratio and a darker grey corresponds to a higher value. The percentage gives the distribution of signal from invisibly decaying Higgs bosons to each of the bins.

ATLAS Preliminary, 139 fb⁻¹

Jona Bossio (CERN)

20

Search for dark matter in the context of 2HDM+a

arXiv:2011.09308 submitted to Eur. Phys. J. C.

Variable	tW_{1L}	tW _{2L}	tj _{1L}	
Trigger	$E_{ m T}^{ m miss}$	dilepton	$E_{\rm T}^{\rm miss}$ OR one-lepton	
$N_{\ell}^{\rm signal}$	= 1	= 2 (OS)	= 1	
$p_{\mathrm{T}}(\ell_1)$ [GeV]	> 30	> 25	> 30	
$p_{\mathrm{T}}(\ell_2)$ [GeV]	-	> 20	-	
N _{jet}	≥ 3	≥ 1	∈ [1,4]	
$p_{\rm T}({\rm jet})$ [GeV]	> 30	> 30	> 30	
N_{b-jet}	≥ 1	≥ 1	∈ [1,2]	
$p_{\mathrm{T}}(b_1)$ [GeV]	> 50	> 50	> 50	
$E_{\rm T}^{\rm miss}$ [GeV]	> 250	> 200	> 200	
$m_{\rm T}^{\rm lep}$ [GeV]	> 30	-	> 60	
$m_{\ell\ell}$ [GeV]	-	$\geq 40, \notin [71, 111] (ee/\mu\mu)$	-	
$\Delta \phi_{\min}$ [rad]	> 0.5	-	> 0.5	

Jona Bossio (CERN)

21

 ϕ/a

10²

10=

Scalar

 $t\bar{t}+\phi, \phi \rightarrow \chi\chi$

g = 1.0, m = 1 GeV

Observed 95% CL

Expected 95% CL

High Theory unc. on cross-section $\sigma_{Tb}(g=1.0)$

Expected $\pm 1 \sigma$ Expected $\pm 2 \sigma$

CL limit on σ_{obs}/σ_{Th} (g=1.0)

Final states: One or two leptons, multiple jets and large MET

Dedicated selection/analysis for each decay mode

<u>Spin-0 mediator DM model</u>: Mediator (scalar ϕ or pseudoscalar a) is produced in association with a top-quark pair and decays to a pair of DM particles

Upper limits are calculated at 95% CL on the ratio of the production cross-section for the spin-0 mediator model to the theoretical cross-section

ATLAS

Scalar

 $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹

DM+tt Interpretation within SUSY ArXiv:2102.01444 JHEP 04 (2021) 165 arXiv:2102.01444 JHEP 04 (2021) 174

arXiv:2012.03799

Final states: One or two leptons, multiple jets and large MET (dedicated selections for each decay mode)

- <u>*R*-parity-conserving Minimal Supersymmetric Standard Model (MSSM)</u>:
 - Lightest supersymmetric particle (LSP) is stable and, if weakly interacting, a DM candidate
 - \circ Considering models in which the DM candidate is the lightest neutralino $ilde{\chi}_1^0$
 - Depending on the mass difference b/w the top squark and the neutralino, 3 decay modes are relevant

EPS-HEP2021 | 26-30 July 2021

Jona Bossio (CERN)

DM+tt | SR selections

<u>JHEP 04 (2021) 165</u> <u>arXiv:2102.01444</u> <u>JHEP 04 (2021) 174</u> <u>arXiv:2012.03799</u>

			SR_W^{3-body}	SR ³⁻	-body			arXiv:2012.03799
		Leptons flavour	DF SF	DF	SF			
		$p_{\mathrm{T}}(\ell_1)$ [GeV]	> 25	>	25			
		$p_{\rm T}(\ell_2)$ [GeV]	> 20	>	20			
		$m_{\ell\ell}$ [GeV]	> 20	>	20			
		$ m_{\ell\ell} - m_Z $ [GeV]	- > 20	-	> 20			
		n_{b-jets}	= 0	≥	1			
		$\Delta \phi_{\beta}^{\mathbf{K}}$ [rad]	> 2.3	> 2	2.3			
		$E_{\rm T}^{\rm mas}$ significance	> 12	>	12	<u>.</u>	4 1 1	4 1 1
		$1/\gamma_{R+1}$	> 0.7	> (J. /		SR ^{4-body} _{Small Am}	$SR_{Large \Delta m}^{4-body}$
		$M_{p_{\mathrm{T}}}^{R}$ [GeV]	> 105	>1	20			
-			2 105			$p_{\mathrm{T}}(\ell_1)$ [GeV]	< 25	< 100
	SR ^{2-bod}	ly				$p_{\rm T}(\ell_2)$ [GeV]	< 10	[10, 50]
Leptons flavour	DF	SF DF = D	Different Flavo	our		$m_{\ell\ell}$ [GeV]	>	10
$p_{\mathrm{T}}(\ell_1)$ [GeV]	> 25	SE - S	ame Elavour			$p_{-}(i_{\ell})$ [GeV]		150
$p_{\rm T}(\ell_2)$ [GeV]	> 20	51 - 5				$p_{\mathrm{T}}(f)$ [OUV]		150
$m_{\ell\ell}$ [GeV]	> 20					$\min \Delta R_{\ell_2, j_i}$		> [
$ m_{ee} - m_{\pi} $ [GeV]	_	> 20				$E_{\rm T_{\star}}^{\rm miss}$ significance	>	10
$m_{\ell\ell} = m_Z [000]$	> 1	20				$p_{\rm Tboost}^{\ell\ell}$ [GeV]	>	280
$\Delta \phi_{\text{heast}}$ [rad]	< 1.5					$E_{\rm miss}^{\rm miss}$ [GeV]	>	400
$E^{\text{miss}}_{\text{miss}}$ significance	> 12							
	~ 12					$R_{2\ell}$	> 25	> 13
$m_{\rm T2}^{\iota\iota}$ [GeV]	> 110					$R_{2\ell 4i}$	> 0.44	> 0.38
								2.

Jona Bossio (CERN)

VBF + γ | MET + 2 jets + γ

Variable	SR	$W^{\gamma}_{\mu u}$ CR	$W^{\gamma}_{e\nu}$ CR	$Z^{\gamma}_{ m Rev.Cen.}$ CR	Fake-e CR					
(j_1) [GeV]	> 60									
(j_2) [GeV]	> 50									
	2,3									
$N_{ m b-iet}$	< 2									
$\Delta \phi_{ii}$	< 2.5 [2.0]									
$ \Delta \eta_{ m ii} $	> 3.0									
$\eta(j_1) \times \eta(j_2)$	< 0									
C_3	< 0.7									
m_{ii} []	> 0.25									
[GeV]	> 150		> 80	> 150	< 80					
$E_{\rm T}^{\rm miss, lep-rm}$ [GeV]	(i).	> 150	> 150	_	> 150					
$E_{\rm T}^{\rm jets, no-jvt}$ [GeV]			> 1	.30						
$\Delta \phi(j_i, E_{\rm T}^{\rm miss, lep-rm})$	> 1.0									
N_{γ}	1									
(γ) [GeV]	$> 15, < 110 [> 15, < \max(110, 0.733 \times m_{\rm T})]$									
C_{γ}	> 0.4	> 0.4	> 0.4	< 0.4	> 0.4					
$\Delta \phi(\gamma, E_{\mathrm{T}}^{\mathrm{miss, lep-rm}})$	> 1.8 [-]									
N_ℓ	$0 \qquad 1 \mu \qquad 1 e \qquad 0 \qquad 1 e$									
$(\ell) [{ m GeV}]$	> 30									

Jona Bossio (CERN)

EPS-HEP2021 | 26-30 July 2021

25

arXiv:2104.13240 $H(\gamma\gamma) + MET$ submitted to JHEP 2HDM+a Z'-2HDM model 2HDM + light pseudo-scalar a Z'_B model 2HDM + Z'→hA Z' emits h and then decays **ggF** (tanβ≲5) **bbA** (tanβ>5) (A heavy pseudo-scalar) to DM particles ZA 7! [GeV] 5¹²⁰⁰ [GeV] Observed limit (±1 σ_{theory}) Observed limit (±1 σ_{theory})_ Observed limit (±1 otheory ATLAS ATLAS ATLAS ⁺ 200' ----Expected limit $(\pm 1\sigma_{exp})$ √s = 13 TeV, 139 fb¹ √s = 13 TeV, 139 fb¹ vs = 13 TeV, 139 fb Expected limit (±1 σ_{exp}) E 550 E 1000 Expected limit (±1 σ_{exp}) Limits at 95% CL Limits at 95% CL Limits at 95% CL $h(\gamma\gamma) + E_{T}^{miss}$, Z'-2HDM, Dirac DM $\sin\theta = 0.3, g_{a} = 1/3, g_{a} = 1$ $\tan\beta = 1.0, \sin\theta = 0.35, m_{\gamma} = 10 \text{ GeV}$ $h(\gamma\gamma) + E_{\tau}^{miss}, Z'_{B}, Dirac DM$ 900 500 $h(\gamma\gamma) + E_{T}^{miss}$, 2HDM+a, Dirac DM 400 $\tan\beta = 1.0, g_{\gamma} = 0.8, m_{\chi} = 100 \text{ GeV}, m_{H^{0.\pm}} = m_{A}$ 800 450 300 700 400F 600 350F 200 500 300F 400 100 250 300

Jona Bossio (CERN)

200

0

400

600

800

1000

1200

¹⁴⁰⁰ 1600 *m_{Z'}* [GeV]

400

600

800

EPS-HEP2021 | 26-30 July 2021

1000

1200

m_{z'} [GeV]

200

150

200

250

300

350

Zυ

m_a [GeV]

Mono-s→V

Phys. Rev. Lett. 126, 121802 (2021) arXiv:2010.06548

Jona Bossio (CERN)

EPS-HEP2021 | 26-30 July 2021

27

DM+bb |Spin-0 mediator and SUSY JHEP 05 (2021) 093 arXiv:2101.12527

Jona Bossio (CERN)

Summary searches for spin-0 mediators

Scalar mediator

Pseudo-scalar mediator

EPS-HEP2021 | 26-30 July 2021

Jona Bossio (CERN)

Jona Bossio (CERN)

Higgs as mediator | Combined results

ATLAS-CONF-2020-052

DM-SM interactions mediated by Higgs boson: coupling to DM enhances H→invisible decays (SM ~0.1%)

Combined results:

- *tt*H (MET+tt)
- VBF = Vector-Boson Fusion (MET + 2 jets) [Most sensitive]

ATLAS Run 1+2 BR(H→inv) < 0.11 (0.11) obs. (exp.) at 95% CL

Combined results translated into a spin-independent DM-nucleon elastic scattering cross-section limit and are compared to direct searches

ATLAS Preliminary

√s = 7 TeV, 4.7 fb

Assuming Higgs portal scenarios where the 125 GeV Higgs boson decays to a pair of DM particles that are either scalars or Majorana fermions

 $B_{H \rightarrow inv} < 0.09$

VBF + γ | MET + 2 jets + γ

32

Search for the invisible or partially invisible decay of a Higgs boson produced through Vector Boson Fusion (VBF) with a photon in the final state

Extracted limits:

- Obs. (exp.) upper limit of 0.37 (0.34) at 95% CL on the branching ratio of a SM-like Higgs boson to invisible particles
- Obs. (exp.) 95% CL upper limit on the branching ratio for $H \rightarrow \gamma \gamma_d$ at 0.014 (0.017) (m(H) = 125 GeV)

Jona Bossio (CERN)